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ABSTRACT

Lower confidence limit estimation procedures for the reliability of several
systems are developed and their accuracies evaluated using computer simulation.
The procedures use test data on components of the system which can have failure
times with either exponential or Weibull distributions or both. Testing scenarios for
the components can be truncated by number of failures or by planned test times.

Although the evaluation effort was focussed on series systems in this thesis, the
procedures readily apply to other systems as described in the thesis. The evaluations
demonstrate the procedures to be quite accurate when sufficient component testing
is performed.

Two FORTRAN computer programs were written to perform the evaluation.
They are annotated in Users’ Guides and can be used to determine the accuracy of
these approximate lower confidence limit procedures for a given specific system and

associated set of input parameters.
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THESIS DISCLAIMER

The reader is cautioned that the computer programs developed in this
research may not have been exercised for all cases of interest. While every effort has
been made, within the time available, to ensure that the programs are free of
computational and logic errors, they cannot be considered validated. Any application

of these programs without additional verification is at the risk of the user.

iv




TABLE OF CONTENTS

L INTRODUCTION . ... e e e e s 1
I THEORY ... . i ettt it e eea 3
A. Interval Estimation Procedure for Exponential Failure Times ... .. 3
B. Interval Estimation Procedure for Weibull Failure Times ........ 7
HI. COMPUTER SIMULATION . ... ... ... .. . . . i, 11
A. Test Plan 1 : Testing n; Until f; Failures (RETP1) ............ 11

B. Test Plan 2 : Testing for a Specified Planned Test Time (RETP2) 14

IV. RESULTS AND DISCUSSION .. . ... ... i 17
A. Test Plan 1 : Testing n; Until f; Failures (RETP1) ............ 17
B. Test Plan 2 : Testing for a Specified Planned Test Time (RETP2) 25

V. APPLICATION EXAMPLES . ... ... ... . i, 32
VL CONCLUSION . . e e e e e 36
VII. RECOMMENDATIONS ... .. i i, 37
APPENDIX A : Derivation of FormulaUsed ....................... 38
APPENDIX B : Users' Guide for RETP1 ... ............. ... ... ... 40
APPENDIX C : Users’ Guide for RETP2 ... ... ... ... ... ... 63




APPENDIX D : Evaluation of Subroutines and Functions .............. 88

APPENDIX E : Tabulated Run Results for RETP1 ................... 94
APPENDIX F : Tabulated Run Results for RETP2 ................... 107
LISTOFREFERENCES . .. ... ... i iiiiieeeernannns 120
INITIAL DISTRIBUTION LIST .. ..... ... ... i, 121

vi




ACKNOWLEDGEMENT

I am grateful to my thesis advisor, Professor Woods, for his trust and patience.
His constant words of encouragement and timely advice is deeply appreciated. Iwish
to thank Professor Read for his help in editing this report. The staff of the NPGS
computer center and the OR Department’s microcomputer lab has been most
courteous and helpful.

Finally, I must thank my wife, Jacqueline, for her jovial spirit and consistent

support during our stay here in Monterey.

vil




I. INTRODUCTION

This thesis develops approximate lower confidence interval procedures for the
reliability of complex systems using test data on components of the system. The
accuracies of these procedures are also assessed using computer simulation. The
procedures can be used for any complex system whose reliability does not decrease
when the reliability of any one of the components is increased.

The failure times of the continuously operating components are assumed to
have either an exponential or Weibull distribution. Parameters in both distributions
are assumed to be unknown. The Weibull distribution is used to model the lifetime
probability distribution of electronic components with non-constant failure rate
functions. It is also used to model the lifetime probability distributions of mechanical
devices, since their failure rate functions are usually increasing with operating time.

Lower confidence limit estimation procedures for system reliability are needed
during the development phase of systems to provide indications of a contractor’s
ability to meet a stated system reliability goal as development progresses and the
results of test programs< become available. These procedures are also needed to
assess the reliability of systems that have been operating in the field for some time
and have accumulated histories of failure data and unique configurations of modified
or repaired components.

Few textbooks on reliability treat the problem of system reliability interval
estimation. Those that do usually limit the discussion to series or parallel systems.
Moreover, the procedures they present are not adaptable to other more complex
systems. Mann, Shafer, and Singpurwalla [Ref.1 pp 487-524] provide one of the better
treatments of a variety of these methods in Chapter 10 of their book. This chapter
provides an excellent summative discussion of the many procedures that were
developed from 1954 to 1974. However, none of the procedures reviewed in their

book can accomodate the use of test data from a mix of components with both




exponential and Weibull failure time distributions. The procedures presented in this
thesis does accomodate this type of system with a mixture of different component
types. In addition, the procedures presented in this thesis can accomodate an
additional mix of components for which only attribute data has been collected.

Procedures developed in this thesis are extensions of a procedure developed by
Myhre, Sanders and Rosenfeld [Ref.2]. In their paper, they assume the failure times
of continuously operating components have exponential distributions with associated
failure rates, ;. The test data on the remaining components, the number of observed
failures f; in n, tests, are assumed to have Poisson distributions with associated means
n.q,. They assume the ratios X,/); , q,/q; and ,/q; are known and develop confidence
interval estimation procedures for system reliability that use this information. They
also show that the accuracy of their procedure is not very sensitive to moderate
inaccuracies of these ratios. This suggests that it might be possible to estimate the
ratios from the data as part of the interval estimation process and not suffer
significant loss of accuracy in the interval estimates. Estimating these ratios is part
of the procedures developed in this thesis.

This thesis also provides an annotated computer program that can be used to
assess the accuracies of the lower confidence limit procedures when applied to any
specific system. Sufficient annotations are provided throughout the program in
Appendix C. This program provides the user with a means for verifying the accuracy
of these proposed lower confidence limit procedures for his specific system and
testing program, that is, sample sizes and type of truncation. This capability will

allow the user to answer many "what if” type of questions.




II. THEORY

A. Interval Estimation Procedure for Exponential Failure Times
A system is defined to be quasi-coherent if an increase in reliability of any one
of its components does not cause a decrease in system reliability. The components
of a quasi-coherent system do not need to be statistically independent. However,
throughout this thesis, it is assumed that all components are statistically independent.
Suppose a quasi-coherent system has k components and the distribution of the
failure time of component i is exponential with failure rate A\, Then the system

reliability R, can be written as a function of X, , i = 1, 2, ..., k as follows:

R (’) = g( xlvx‘n X l’t 5y "tk ) e (‘... )

where ¢, is the operating time for component i. Let m be any one of the k
components and r, = A/, , fori = 1,2, ..., k. Then equation (2.1) may be viewed

as
R(t) = g( My Fplavesl titynty ) .. (2.2)
If the r,’s are known and Xm‘b.(u) were an upper lOO(l-a)% confidence limit for A,

the corresponding lower confidence limit for R (t) would be:
5 2
R()y ) = &( X”LU(G), FisTreesThs Eiatanennsty ) - (2.3)
Specifically, if we have a sertes system of independent components, so that

x
expl =Y ¢, )
in . (24)
k

expl -2, Y re )

i=1

R(1)




then,

K
R0 = exp{ -5, nYorit, ) . (2.5)
=1

If n, items of component i are tested until f; failures occur, 7, denotes the total test
k

time accumulated on all the », items, and F = Y f; then the expression

i=]1

k
20, XrT,
i=]
has a Chi-square distribution with 2F degrees of freedom. See Bain and Engelhardt

[Ref.3]. The corresponding 100(1-a)% upper confidence limit for X , is

-

Xﬁu\ZF

k
2y T,

i=1

Avie) = .. (2.6)

where X%, »: is the 100(1-a)th percentile point of a Chi-square distribution with 2F
degrees of freedom.
If the testing on component { is terminated when a total test time of T, has

been accumulated by all n; items, then the equation for Xm‘u(a) becomes

qu.sz)
S‘m.U(a) R —
22 r,T,

i=1

. (2.7)

In this case f, is random and so is F.
If testing on each of the n, items of component i are tested until a planned test
time or failure, and failed items are replaced immediately, then equation (2.7) will

be the exact expression for & . If failures are not replaced, then equation (2.7)

m.U(a)

is approximate. See Lee, Bain and Englehardt [Ref.3 pp 486-495]. Department of




Defense document NAVSEA OD29304B "Reliability and Availability Evaluation

Program Manual" [Ref.4 p 5-42] provides nearly exact procedures for meu(u) when

testing is terminated by planned test time for each item tested and failures are not
replaced.
The values of the r’s are assumed to be unknown in this thesis. When testing

is terminated by the number of failures, a nearly unbiased estimator for r, is

Po= L .. (2.8)

where X, = (f,-1)/T, and the index m denotes the component with largest value

of &, . Theratio, (f-1)/T;,is an unbiased estimator for \; (see Appendix A). If 1/ ,
were unbiased for 1/X then #, wouldbe anunbiased estimator forr,. Replacing &

with X"jm /(f,,-1) in equation (2.8) will yield an unbiased estimator 7, for 7,

Multiplying by this constant f,, /(f,,-1) is nullified by a cancellation with the same
constant in the final equation for the system reliability lower confidence limit, so

equation (2.8) is used to estimate r,. Using estimator 7, for r; , equation (2.6)

becomes

mUe) T L)

It is important to note that the index m denotes the component for which X,

= (f-1)/T,is the largest among all the components in the system. The corresponding
equation for the 100(1-a)% lower confidence limit on the reliability of a series

system is



k
Rs(t)L(u) = exp{ -S‘m,U(u)E i‘-'_ti } .. (2.10)
i=1

The corresponding lower confidence limit for the reliability of any quasi-

coherent system is given by equation (2.3) with r; replaced by 7, .
In this thesis, equation (2.8) with &, = f,/T; will also be used to estimate r,

under exponential assumptions when testing is terminated after an accumulated test
time is achieved (fruncated), and when at least two components have at least one
failed test item. This is done because failures will not be replaced in the time
truncated test plans that are simulated in this thesis. In this type of testing both f;
and T, are random. Under time truncation, it is possible that no failures will occur
on any component tested in which case equation (2.8) is undefined. Also, if only one
component has one failure and the remaining components have zero failure, equation
(2.8) would be zero for all i except the case wheni = m.

All of the confidence limit procedures in this thesis have a common special
method for computing the lower confidence limit of system reliability in the two
cases of zero or one failure. This feature amounts to a modification to equations
(2.3) and (2.10).

When either zero failures or one failure have occured among all components,
the test data is examined for each component to determine the total number, N, , of
equivalent component mission tests (i = 1, 2, .., k). These N/s and the system
configuration are analyzed to determine the equivalent number of mission tests, N,
for the system that would have occurred if N;, N,, ..., N, of these kK components
were assembled into systems.

For a series system, this N will be equivalent to min { N;, N,, .., N, }. The
100(1-a)% lower confidence limit of system reliability if zero failures occurred is then

computed directly as follows:




Rs(t)L(u) = A‘y/; . (2.11)

If exactly one failure occurred among all k& components, Rs(t),_(a) will be the

solution for p in the equation
P N + NpN‘l(l_p) = .. (2.12)

These confidence limit equations are the standard binomial lower confidence limit
equations. Equations (2.11) and (2.12) are part of the set of equations used to

compute Rs(t)L(a) for all of the time truncated interval estimation procedures in

this thesis.

It is important to remember that the symbol T; in equations (2.7), (2.8) and

(2.9) denote total accumulated test time for component i ; that is

T, = E T, . (2.13)
j=

where T; is the test time accumulated on the jth test item of component i and #; is

the number of test items of component i being tested.

B. Interval Estimation Procedure for Weibull Failure Times

Consider a series system with kK components. Let the time to failure, X; , of

component [ have a Weibull distribution with density
fit) = 2peP exp -0y, o >0 . (2.14)
Then

R.(t) = expl -(0t)" ), t >0 .. (2.15)




and

k
II expl-2lt)

i=]

k
exp{-Y_ AP - (2.16)

i=1

58
exp{-X, Y rt"}

i=]

R (1)

where )" = AP, X "isany one of the ), ,i = 1,2, .., k,andr, = \°/x_". If the
B/s are known, then X* will have a constant failure rate A" and the procedures

described in Section: A can be used to obtain R(),,, with T} replaced by T,* in

equation (2.13).
Suppose B; is unknown and X;;, , X; 5, ..., X, are the ordered failure times
under either type of truncated testing for component i in the system. Solutions

B, and %, for B; and ) in the two equations given in equation (2.17) are the

maximum likelihood estimates for B; and ),. See Mann and others [Ref.1 pp 189-191].
These equations are used for both types of test truncation. If for component i,
testing is terminated on the f failure, then t, = X, (m I equation (2.17). The

solution, B, , is a biased estimator for f,. Bain [Ref.5 pp 220] provides a table of
constants B(n;) which depends on number of test items »; such that B,.' = ﬁ,.B(ni)

is a nearly unbiased estimator for ;.

f, 5 .
in(;)lnXi(j) + (n,=f;)t; Int,
= . (2.17a)

1 1
-1 oIy,
B; f,-f-‘; @

L

B, B
E Xi(j) M (ni _fi)tir
Jj=1




and
B, f;

7,
B B;
Y Xy * (n~f)ts

Jj=t

.. (2.17b)

If the testing for component i is terminated at failure or at a given time ¢ for
each of the n; items on test, then ¢, = t,; in equations (2.17a) and (2.17b).

Now, let

8, . .
T, =X; , with 1
j =

]
Uy

b2, .k .. (2.18)
2, ..

In this thesis, the distribution of T; is approximated by the exponential distribution

with failure rate )" = A;  and procedures similar to those in Section A are used

to obtain the lower confidence limit on system reliability. Define

-
5 = = . (2.19)

]

where T,.=ZT,.]. , =12 .,k. Let & =maxy, &

i
j=1

Note that this defines the index m. Define 7, by

)
S L. ... (2.20)
it M)

for both types of test truncation plans.

Then an approximate 100(1-@)% upper confidence limit for ), is given by




2

X * = X&ZF *
m.U(e) k -« (2:21)
2y AT,
i=1
where
Xk: f if test till f,™ failure
Fe= 1 @ ' " for all components - (2.22)

1+ Xk: f if test till specified time
i > for all components

i=1
\

The corresponding approximate 100(1-a)% lower confidence limit Ry(t); ,, for the

reliability R,(t) of a series system is given by

k N
R ()1 = expl -5,y 2 7 itibi ) - (2:23)
i=]

when at least two components have at least one failure. Equations (2.11) and (2.12)

also apply here when the total failures over all components is either zero or one.
The accuracies of these approximate confidence interval procedures were

evaluated by using computer simulations which are described in the next chapter.

During this evaluation process, the degrees of freedom in the expressions X, -
in equation (2.21), xZﬂF in equation (2.9) and x"&z(hm in equation (2.7) were

increased and decreased from the defined values of F' and F given by these
equations. The purpose of these modifications was to find more accurate lower
confidence limit procedures. The specific increases and decreases are described in
Chapter III. The results show that for some cases the procedures with modified

degrees of freedom are more accurate.

10




III. COMPUTER SIMULATION

A.  Test Plan 1 : Testing n; Until f; Failures (RETP1)

RETP1 is a program written in FORTRAN, on the Amdahl mainframe
computer, which performs the computer simulation of the random failure times of
the different types of components in the system. A documentation of this program
and its associated subroutines is included in Appendix B.

The program accepts input parameters via an input file IN1.DAT. For each
replication, it generates the failure times for all the component items included in the
test plan using a uniform random number generating subroutine LRNDPC. A quick
evaluation of LRNDPC (see Appendix D) by plotting U(n+1) vs U(n) illustrates the
uniformity of the routine. The program determines the total test time accumulated
for each component in the system and computes the estimates of the key parameters
and the consequent lower confidence limit for system reliability for that replication.
The process is repeated 1000 times. When all replications are done, the routine
EVAL processes the lower confidence limit estimates from all 1000 replications and
determines the two measures of accuracy for the run, namely RSLOW and LEVEL.

RSLOW is the 100(1-a) percentile of the ordered set of lower confidence limits
from the 1000 replications computed in a run. The true reliability of the system is
RS. The closer RSLOW is to RS, the greater the accuracy of the procedure under
evaluation in the run. If the procedure is exact, RSLOW will be equivalent to RS.
To be conservative, RSLOW should always be lower than RS.

LEVEL measures the proportion of 1000 lower confidence limits, from a run
with 1000 replications, which are lower than the true system reliability RS. The
closer LEVEL is to the specified confidence level for the procedure, 1-a, the better
the procedure. Values of LEVEL greater than (1-a) reflect an under-estimation of
RS which is conservative. Values of LEVEL lesser than 1-a signal an over-

estimation of RS which may be undesirable.

11




Simulation runs are performed using RETP1 for all combinations of failure

time distributions and levels of key input parameters listed below.

(a) System. - 8 Exponential components in Series (Case 1)
- 8 Weibull components in Series (Case 2)
- 4 Exp and 4 Wei (Mixed) components in Series (Case 3)

(b) True System Reliability (RS).

- Hi (greater than 0.9) (Type A)
- Lo (greater than 0.8) (Type B)

(c¢) Level of Significance (a).

-0.1
-0.2

(d) Degrees of Freedom for x* statistic (DF) as a function of the total number of
failed test components (NFC) and total number of system components (NCOMP).

-DF = 2 * NFC

- DF = 2 * (NFC + NCOMP )
- DF = 2 * ( NFC - NCOMP )
- DF = 2 * NFC - NCOMP

e) Test Plan for each component.

- Test S until S failures

- Test 15 until 15 failures
- Test 15 until 11 failures
- Test 15 until 7 failures
- Test 15 until 3 failures

For the 8 exponential components in Case 1, the mission time for each of the
component is chosen to be 10 hrs. The program will accomodate different
component mission times. The chosen values of the scale parameters, ); , were
different depending on whether the system is highly reliable (Type A) or one with
a lower reliability (Type B). The ratios between the largest and the smallest failure

rate was chosen to be 8 and 4.5 respectively for Type A and Type B systems.

12




For the 8 Weibull components in Case 2, the mission time for each of the
components was chosen to be 10 hrs. The chosen values of the scale parameters, X,
were different depending on whether the system is highly reliable (Type A) or one
with a lower reliability (Type B). The ratio between the largest and smallest failure
rate was chosen to be 8 for both system types. The shape parameter is chosen to be
2 for all cases. The program will accomodate any value greater than zero for the
shape parameter.

A mixture of exponential and Weibull components with those parameters
described in the last two paragraphs is chosen for the Type A and Type B systems
of Case 3.

Each simulation run of 1000 replication results in an output file OUT1.DAT.
The raw output from all the RETP1 runs are summarized in tabular form and placed
in Appendix E. Each table corresponds to a specific run case and system type

combination.

13




B. Test Plan 2 : Testing for a Specified Planned Test Time (RETP2)

RETP2 is another program written in FORTRAN, on the Amdahl mainframe
computer, which performs the computer simulation of the random failure times of
the different types of components in the system. A documentation of this program
and its associated subroutines is included in Appendix C.

The structure of this program is quite similar to that of RETP1 described in
Section A of this chapter. The program accepts input parameters via an input file
IN2.DAT. For each replication, it generates the failure times for all the component
items included in the test plan using LRNDPC. The program then determines the
number of failed test components for each component in the system and computes
the estimates of the key parameters and the consequent lower confidence limit for
system reliability for that replication. The process is repeated 1000 times. When all
replications are done, the routine EVAL processes the lower confidence limit
estimates from all the 1000 replications and determines the two measures of accuracy
for the run, namely RSLOW and LEVEL. The definitions of these two measures
were discussed in the Section A.

Simulation runs are performed using RETP2 for all combinations of failure

time distributions and levels of key input parameters listed below.

(a) System. - 8 Exponential components in Series (Case 4)
- 8 Weibull components in Series (Case 5)
- 4 Exp and 4 Wei (Mixed) components in Series (Case 6)

(b) True System Reliability (RS).

- Hi (greater than 0.9) (Type A)
- Lo (greater than 0.8) (Type B)

(c) Level of Significance (a).

- 0.1
-0.2

14




(d) Degrees of Freedom for x? statistic (DF) as a function of the total number of
failed test components (NFC) and total number of system components (NCOMP).

-DF =2*(1+ NFC)
-DF =13*2*(1 + NFC)

(e) 10 values of K = 0.25, 0.5, 1, 2, 3, 4, 5, 10, 20, 30

where K is a factor such that the expected number of failures for an exponential
component during the specified total test time for that component is 0.6 times K.
This K factor determines the bounds of the expected total number of failed test items,
E[NFC]. The accuracy of the lower confidence limit procedures are highly correlated
with E[NFC].

For the 8 exponential components in Case 4, the mission time for each of the
component is chosen to be S hrs. The program can accomodate different component
mission times. The chosen values of the scale parameters, X, were different
depending on whether the resultant system is highly reliable (Type A) or one with
a lower reliability (Type B). The failure rate was chosen to be 0.001 and 0.005
failures/hr for all the components respectively. Total test time to be accumulated
by each component is computed according to the following method. For each
component i , ¢, represents the amount of operating time required to result in a 40%
survival probability, that is, an expected failure of 0.6 component with an exponential

failure time distribution. The computation for ¢, is as follows:

R(t)

exp(-At)
04
-(})ln(o.at)

~
1]

T, , the total amount of test time to be accumulated for component i would be
K times ¢, which will result in an expected number of 0.6 times X failed items for this
component. E[NFC] will then be 8 times that number, since there are 8 such

components in the system.
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For the 8 Weibull components in Case S, the mission time for each of the
component is chosen to be 15 hrs. The chosen values of the scale parameters, X, ,
were 0.005 failures/hr for the Type A system and 0.01 failures/hr for a Type B
system. The shape parameter is chosen to be 2. For each Weibull component, a
maximum of 20 test items are tested to failure. Estimation of E[NFC] and thus the
total test time to be accumulated for each component is based on the exponential
failure time model described in the earlier paragraphs.

A mixture of exponential and Weibull components with those parameters
described in the last two paragraphs is chosen for the Type A and Type B systems
of Case 6.

Each simulation run of 1000 replication results in an output file OUT2.DAT.
The raw output from all the RETP2 runs are summarized in tabular form and placed

in Appendix F. Each table corresponds to a specific run case and system type

combination.




IV. RESULTS AND DISCUSSION
The results of the simulation runs are summarized and discussed in this section.
Tables 1A, 1B, 2A, 2B, 3A and 3B in Appendix E, and Tables 4A, 4B, SA, 5B, 6A
and 6B in Appendix F present the accuracy results in tabular form for all run cases
that were simulated: a few of these tables appear in this section to facilitate

discussion of the results.

A. Test Plan 1 : Testing n; Until f; Failures (RETP1)

Table 1A displays the simulation results for Case 1 Type A. In this case, the
system is comprised of 8 components in series. The failure time of each component
has an exponential distribution. The failure rates of the 8 components range from
0.0002 failures/hour to 0.0016 failures/hour. The mission time of the system is 10
hours and the mission operating time of each component was also set to 10 hours.
The component mission times do not need to be equal to the system mission time
for the procedures evaluated in this thesis. This was discussed in Chapter II and is
allowed for in all of the lower confidence limit equations. System reliability, RS, in
Table 1A is 0.931 . Throughout this case, all of these parameters remain fixed.

In simulation number 1 (S§/N: 1) in Table 1A, five items for each of the 8
components in the system are tested until they fail. Thus the number of failed
components (NFC) is 40. One set of this 40 failure times is randomly generated for
each simulation run. For this set of data, four 909% lower confidence limits and four
80% lower confidence limits are computed. The four limits correspond to the values
assigned to the degrees of freedom parameter F in the symbol x?, , which is a factor

in the upper confidence limit equation for & . The four different methods for

U(a)

computing this degree of freedom appear in the "Deg of Freedom" column. NCOMP
denotes the number of components in the system. Thus for each simulation run,

eight lower confidence limits are computed. After 1000 replications of this
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Table 1A :

8 Exp in Series, RS = 0.931 (Hi)
min X = 0.0002 f/hr, max A = 0.0016 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
1 Test 5 undil 2*NFC 0.1 0.919 0.982
5 failed. (80)
0.2 0919 0.960
NFC=40 2*(NFC+ 0.1 0.906 1.000
NCOMP)
(96) 0.2 0.905 0.999
2*NFC- 0.1 0927 0.949
NCOMP
(72) 0.2 0.927 0.880
2*(NFC- 0.1 0.934 0.821
NCOMP)
(64) 0.2 0.934 0.702
2 Test 15 until 2*NFC 0.1 0.928 0.955
15 failed. (240)
0.2 0.927 0.908
NFC=120 2*(NFC+ 0.1 0.923 0.990
NCOMP)
(256) 0.2 0.923 0975
2*NFC- 0.1 0.930 0.916
NCOMP
(232) 0.2 0.930 0.833
2*(NF- 0.1 0.932 0.844
NCOMP)
(224) 0.2 0932 0.747
3 Test 15 until 2*NFC 0.1 0.927 0.955
11 failed. (176)
0.2 0.926 0.916
NFC=88 2%(NFC+ 0.1 0921 0.996
NCOMP)
(192) 02 0.920 0.988
2*NFC- 0.1 0.930 0.916
NCOMP
(168) 02 0.929 0.843
2*(NFC- 0.1 0933 0.843
NCOMP)
(160) 02 0.932 0.735
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Table 1A : 8 Exp in Series, RS = 0.931 (Hi) (Cont...)
min A = 0.0002 f/hr, max A = 0.0016 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
4 Test 15 until 2*NFC 0.1 0.924 0.970
7 failed. (112)
02 0.923 0931
NFC=56 24(NFC+ 0.1 0915 0.998
NCOMP) -
(128) 0.2 0.913 0.994
2*NFC- 0.1 0.929 0919
NCOMP
(104) 02 0.928 0.853
2*(NFC- 0.1 0.934 0.835
NCOMP)
(96) 0.2 0933 0.720
5 Test 15 until 2*NFC 0.1 0.915 0.986
3 failed. (48)
0.2 0.912 0975
NFC=24 2*(NFC+ 01 0.891 1.000
NCOMP)
(64) 02 0.888 1.000
2*NFC- 0.1 0.927 0944
NCOMP
(40) 02 0.926 0.860
2*(NFC- 0.1 0.939 0.753
NCOMP)
(32) 0.2 0939 0.634

simulation are run, the 2 measures of accuracy RSLOW and LEVEL are computed.
The lower confidence limit procedures are exact if RSLOW = RS in which case
LEVEL = I-a.

Table 1A displays the accuracy results for S different sampling plans which are
described in S/N: 1, 2, 3, 4 and S.

A comparison of the four values of RSLOW for each of these five sampling

plans reveal that the lower confidence limit procedure with degrees of freedom equal
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to 2*NFC-NCOMP is the most accurate lower confidence limit procedure. In S/N
1, for example, the RSLOW value of 0.927 is the largest such value below the RS
value of 0.931. Values of RSLOW above RS are optimistic and not as desirable as
values of RSLOW which are equi-distant below RS.

The values of RSLOW and LEVEL are based on 1000 replications and their
accuracy merit should roughly be measured to the nearest one hundredth. That is
we should round 0.927 to 0.93 and compare it with RS = 0.93. It is evident that the
lower confidence limit procedure with degrees of freedom equal to 2*NFC-NCOMP
is very accurate for all cases simulated.

Table 2A displays the accuracy results of Case 2 for Type A systems. In this
case, the 8 components connected in series have the shape parameter 8 = 2 and the
scale parameters ); varying between 0.001 and 0.008 failures/hr. Mission time is 10
hours and each component has this same mission or utilization time (UT).
Inspection of Table 2A reveals the following:

(1) More than S items of each component should be tested until failure for
any of these procedures to be reasonably accurate.

(2) If 15 items of each component are tested until all fail, then these
procedures will be reasonably accurate when the degrees of freedom is either
2*NFC-NCOMP or 2*(NFC-NCOMP).

(3) The procedures are reasonably accurate for 80% confidence level when
the truncation is not below 7 out of 15 items.

(4) The procedures are slightly conservative at the 90% confidence level when
the truncation is 7 out of 15 items or 11 out of 15 items.

There are numerous ways to modify these lower confidence limit procedures
to effect improvements in their accuracy. One avenue is to modify the estimate for
the shape parameter, 8. Some very recent work in the literature provides a method
for estimating 8 that differs greatly from the maximum likelihood estimator (MLE)

and does not require computer iteration.
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Table 2A :

8 Wei in Series, RS = 0.980 (Hi)
min A = 0.001 f/hr, max A = 0.008 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy “
S/N Plan Freedom a
RSLOW LEVEL _“
1 Test 5 until 2*NFC 01 0.947 0.992
5 failed. (80)
0.2 0.930 0.989
NFC=40 24(NFC+ 0.1 0.937 0.994
NCOMP)
(96) 02 0918 0993
2*NFC- 0.1 0951 0.989
NCOMP
(72) 02 0.937 0.986
2*(NFC- 0.1 0.956 0.985
NCOMP)
(64) 0.2 0943 - 0.981
2 Test 15 until 2*NFC 0.1 0.978 0918
15 failed. (240)
02 0974 0913
NFC=120 2*(NFC+ 0.1 0977 0.931
NCOMP)
(256) 0.2 0972 0924
2*NFC- 0.1 0979 0.914
NCOMP
(232) 0.2 0975 0.901
2*(NFC- 0.1 0.980 0.904
NCOMP)
(224) 0.2 0.975 0.889
3 Test 15 until 2*NFC 0.1 0.982 0.876
11 failed. (176)
02 0.977 0.860
NFC=288 2*(NFC+ 0.1 0.980 0.894
NCOMP)
(192) 02 0975 0.882
2*NFC- 0.1 0.983 0.861
NCOMP
(168) 02 0978 0.839
2*(NFC- 0.1 0.983 0.840
NCOMP)
(160) 0.2 0.979 0.819

21




Table 2A: 8 Wei in Series, RS = 0.980 (Hi) (Cont...)
min XA = 0.001 f/hr, max A\ = 0.008 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom o
RSLOW LEVEL
4 Test 15 until 2*NFC 0.1 0.987 0.800
7 failed. (112)
02 0981 0.779 |
NFC=56 2%(NFC+ 0.1 0985 0.839
NCOMP)
(128) 0.2 0978 0.824
2*NFC- 0.1 0.988 0.776
NCOMP
(104) 0.2 0.982 0.753
2*(NFC- 0.1 0.989 0.746
NCOMP)
(96) 02 0.983 0.732
5 Test 15 until 2*NFC 0.1 0.994 0.621
3 failed. (48) i
02 0991 0.584
NFC=24 2%(NFC+ 0.1 0993 0.705
NCOMP)
(64) 02 0.988 0.685
2*NFC- 0.1 0.995 0.548
NCOMP
(40) 0.2 0.992 0514
2*(NFC- 0.1 0.996 0.468
NCOMP)
(32) 0.2 0.993 0.417

Table 3A displays the results of Case 3 for Type A systems. In this case 8
components are connected in series. Four of them have failure times with
exponential distributions and the remaining four have failure times with Weibull

distributions each with shape parameter, 8, equal to 2.
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Table 3A : 4 Exp and 4 Wei (Mixed) in Series, RS = 0.980 (Hi)
min A = 0.002 f/hr, max A = 0.008 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
.[ 1 Test S until 2*NFC 0.1 0.979 0.942
5 failed. (80)
02 0.978 0.905
NFC=40 2%(NFC+ 0.1 0975 0.987
NCOMP)
(%) 02 0974 0.976
2*NFC- 0.1 0.981 0.881
NCOMP
(72) 0.2 0.980 0.805
2*(NFC- 0.1 0.983 0.771
NCOMP)
(64) 0.2 0.982 0.684
2 Test 15 until 2*NFC 0.1 0.981 0.863
15 failed. (240)
02 0.980 0.800
NFC=120 2%(NFC+ 01 0979 0.941
NCOMP)
(256) 0.2 0979 0.898
2*NFC- 0.1 0.981 0.881
NCOMP
(232) 02 0.980 0.805
2*(NFC- 0.1 0.982 0.725
NCOMP)
(224) 0.2 0.981 0.631
3 Test 15 until 2*NFC 01 0.981 0.864
11 failed. 176
are (176) 02 0.980 0.801
NFC=83 2*(NFC+ 0.1 0979 0.951
NCOMP)
(192) 02 0978 0.907
2*NFC- 0.1 0.982 0.802
NCOMP
(168) 02 0981 0.698
2*(NFC- 0.1 0.982 0.702
NCOMP)
(160) 0.2 0.982 0.591
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Table 3A : 4 Exp and 4 Wei (Mixed) in Series, RS = 0.980 (Hi) (Cont...)
min A = 0.002 f/hr, max A = 0.008 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
4 Test 15 until 2*NFC 0.1 0.981 0.865
7 failed. (112)
02 0.980 0787 |
NFC=56 2%(NFC+ 0.1 0978 0952 "
NCOMP)
(128) 02 0978 0.920
2*NFC- 0.1 0.982 0.769
NCOMP
(104) 0.2 0.982 0.676
2*(NFC- 0.1 0.983 0.644
NCOMP)
(96) 0.2 0.983 0.523
5 Test 15 until 2*NFC 0.1 0.982 0.843
3 failed. (48)
0.2 0.981 0.762
NFC=24 2*(NFC+ 0.1 0.976 0970
NCOMP)
(64) 0.2 0975 0.941
2*NFC- 0.1 0.984 0.684
NCOMP
(40) 0.2 0.984 0.580
2*(NFC- 0.1 0.987 0.459
NCOMP)
(32) 0.2 0.987 0.356

Inspection of Table 3A reveals the following:

(1) The two procedures corresponding to degrees of freedom equal to 2*NFC
and 2*NFC-NCOMP are reasonably accurate for all 5 simulation cases.

(2) The procedures appears to be nearly equally accurate for both 80% and
90% confidence levels.
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B. Test Plan 2 : Testing for a Specified Planned Test Time (RETP2)

In the simulations for test plan 2, components were tested until failure or until
some planned test time scenario. Failed items were not replaced. Components
whose failure times had exponential distributions were tested until a pre-determined
total test time was accumulated for their type of component. Components whose
failure times had Weibull distributions were tested until failure or a pre-determined
planned test time for that test item. The latter truncation plan is needed for Weibull-
type items in order to use the maximum likelihood estimates [as in equation (2.17)]

to solve for B .

Inspection of Table 4A reveals that the lower confidence limit procedure for
degrees of freedom equal to 2*(1+NFC) is quite accurate when enough testing is
done to make the expected number of failures, E[NFC], greater than or equal to 4.8.
This testing constraint is well within the domain of constraints set on testing in
development programs for major systems within the Department of Defense.

Examination of Table SA reveals that the lower confidence limit procedure for
degrees of freedom equal to 2*(1+NFC) is moderately accurate when enough testing
is done to make E[NFC] greater than or equal to 9. The accuracy diminishes slightly
as E[NFC] increases. This could be corrected by decreasing the degrees of freedom
slightly to make RSLOW slightly larger.

The results displayed in Table 6A show that the lower confidence limit
procedure for degrees of freedom equal to 2*(1+NFC) is quite accurate when

enough testing is done to make E[NFC] greater than or equal to 9.6.
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Table 4A : 8 Exp in Series, RS = 0.961 (Hi)
XA = 0.001 f/hr, UT = S hrs
Degrees K / E[NFC] Measures of Accuracy "
S/N of (TT) a
Freedom RSLOW LEVEL
1 2*(1+NFC) 025 /12 0.1 0.950 0.851
(225) v
- 02 0935 0.851
05/24 0.1 0.957 0.857
(450)
02 0.954 0.857
10/48 0.1 0.957 0.941
(900)
0.2 0957 0.850
20/96 0.1 0.958 0916
1800
(1800) 0.2 0.960 0.850
3.0 /144 0.1 0.959 0916
(2700)
0.2 0.959 0.809
40 /192 01 0.959 0.937
(3600)
0.2 0.960 0.843
50 /24 0.1 0.960 0.926
(4500)
0.2 0.960 0814
100 / 48 0.1 0.960 0.924
9000
(5000) 0.2 0.960 0.809
200 / 96 0.1 0.960 0914
(18000)
0.2 0.961 0.820
30.0 / 144 0.1 0.961 0.906
(27000)
0.2 0.961 0.804
| —
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Table SA :

8 Wei in Series, RS = 0.956 (Hi) (*)
X = 0.005 f/hr, UT = 15 hrs

Degrees K / E[NFC] Measures of Accuracy
S/N of (TT) a
Freedom RSLOW LEVEL
1 2*(1+NFC) 025 /12 0.1 1.000 0.186
45
0.2 1.000 0.158
05/24 0.1 0.986 0.501
(90)
0.2 0.979 0.458
10/48 0.1 0.967 0.767
(180)
0.2 0.960 0.732
20/96 0.1 0.957 0.879
(360)
02 0952 . 0.854
30/144 0.1 0.952 0.934
(540)
0.2 0.946 0.922
4.0/ 19.2 0.1 0.952 0.940
(720)
02 0.946 0.928
50/24 0.1 0.952 0.940
(900)
02 0.946 0.928
100 / 48 0.1 0.952 0.940
(1800)
0.2 0.946 0928
20.0 / 96 01 0.952 0.940
(3600)
0.2 0.946 0.928
300/ 144 0.1 0.952 0.940
(5400)
0.2 0.946 0928

(*) 20 test items for each Weibull component.
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Table 6A :

4 Exp and 4 Wei (Mixed) in Series, RS = 0.958 (Hi) (*)

A(exp) = 0.001 f/hr, UT(exp) = S hrs

Mwei) = 0.005 f/hr, UT(wei) = 15 hrs

Degrees K / E[NFC] Measures of Accuracy
S/N of TT(exp) a
Freedom TT(wei) RSLOW LEVEL
1 2*(1+NFC) 025/12 0.1 1.000 0.620
(225)
(45) 0.2 0.995 0.451
05/24 0.1 0.982 0.623
(450)
(90) 02 0975 0.573
10/ 48 0.1 0971 0.736
(900)
(180) 0.2 0.965 0.684
20/96 0.1 0.964 0.803
(1800)
(360) 0.2 0.960 0.765
3.0/ 144 0.1 0.960 0.874
(2700)
(540) 0.2 0.956 0.841
40 /192 0.1 0.960 0.873
(3600)
(720) 0.2 0.957 0.839
50/24 0.1 0.959 0.887
(4500)
(900) 02 0.956 0.861
100 / 48 0.1 0.959 0.891
(9000)
(1800) 0.2 0.956 0.862
200 / %6 0.1 0.959 0.892
(18000)
(3600) 02 0.955 0.867
300/ 14 0.1 0.960 0.877
(27000)
(5400) 0.2 0.956 0.862
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The accuracy results of simulations performed in this thesis cannot be extended
to systems that differ significantly from those simulated here. However, it can be
said that the procedures which are accurate for series systems are also usually
accurate for 1-out-of-k parallel systems because system reliability, R,, can be written

in terms of component reliabilities, R;, as
&

R, =1-T] (1 -R)
i=]

k
Thus, upper confidence limits on  [] (1 - R;) will yield a lower confidence

ix]
limit on R, The accuracy of the upper confidence interval procedures for

k
I1 (1 - R,) ,aseries-type problem, should be nearly the same as those obtained
i=1

in this thesis because equations like (2.9) would be replaced with equations for the

lower confidence limit £,/ on ), and would look like

2
- X 1-a.2F

Xm.L(a) = %
24T,

i=1

. (4.1)

If the degrees of freedom parameter F is large, as it is in the cases simulated in this
thesis, the associated Chi-Square distribution with 2F degrees of freedom is nearly
symmetric about its mean so the lower tail has nearly the same shape as the upper

tail. This characteristic should yield very similar accuracies for Lz as was
obtained for Sm'u(,) in this thesis. These accuracy comparisons translate directly

to similar comparisons about the accuracies of the associated lower confidence limit

procedures for the system reliability of series and parallel systems.
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Table 7 : Summary of Procedure Accuracy by Simulation Category (RETP1)

S/N Key Parameters and Observation and Discussion
their Levels based on RSLOW and LEVEL

1 Run Cases s For all exponential systems, accurate
» All Exponential (1) procedures were developed for component
a All Weibull (2) sample sizes > S.

s Mixed (3) » For all Weibull systems, component
sample sizes should be > 15 with
truncation at r > 7 failures.

2 System Reliabilities Accurate procedures were developed for
= Hi (> 0.9) (Type A) both cases if sample sizes are adequate.
s Lo (> 0.8) (Type B)

3 Levels of Significance Accuracy varied slightly depending on
sa = 0.1 system type and test plan, but accurate
sa =02 procedures exist for both levels.

4 Degrees of Freedom Greatest accuracy as follows:

s DF = 2*NFC s All exponential : 2*NFC-NCOMP

s DF = 2*(NFC+NCOMP) = All Weibull : 2*NFC-NCOMP

s DF = 2*(NFC-NCOMP) or 2*(NFC-NCOMP)

s DF = 2*NFC-NCOMP

5 Test Plan Accurate procedures existed for all run

m Test S until S failures

s Test 15 until 15 failures
= Test 15 until 11 failures
» Test 15 until 7 failures
s Test 15 until 3 failures

cases for all system types except for the all
Weibull system where number of test
items n > 15 and number of failures r
should be > 7.
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Table 8 : Summary of Procedure Accuracy by Simulation Category (RETP2)

S/N Key Parameters and Observation and Discussion
their Levels based on RSLOW and LEVEL
e
1 Run Cases Procedures were accurate for DF =
» All Exponential (4) 2*(1+NFC) when enough testing was
s All Weibull (5) done to make the expected number of
s Mixed (6) failed components E[NFC] > 9.
2 System Reliabilities Same as S/N(1).

s Hi (> 0.9) (Type A)
s Lo (> 0.8) (Type B)

3 Levels of Significance Same as S/N(1).
sa =01
ma =02

4 Degrees of Freedom DF = 2*(1+NFC) was the most accurate
s DF = 2*(1+NFC) procedure.

s DF = 1.3*2*(1+NFC)

5 Test Plan K should be chosen so that E[NFC] > 9.

s K factors of
0.25, 05, 1, 2, 3,
4, 5, 10, 20, 30

Tables 7 and 8 provide cursory summaries of some constraints needed to assure
the existence of one or more accurate lower confidence limit procedures among the
procedures that were evaluated. The simulation scenarios are divided into five

categories for this summarization.
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V. APPLICATION EXAMPLES
Based on the procedures evaluated by the RETP1 and RETP2 runs, four
different test plans and failure time data were constructed to illustrate the use of the
procedures in providing a lower 100(1-a) % confidence limit for the system reliability

of a series system with different types of components.

CASE 1 : 8 Exponential Components in Series
------- TEST PLAN 1 - Test 15 until 7 fails for each component

I. Raw Data
Comp Ordered Failure Times (h)
i (1) T(2) T(3) T(4) T(3) T(6) T(7)
1 300.0 400.0 500.0 600.0 700.0 800.0 900.0
2 350.0 450.0 550.0 650.0 750.0 850.0 850.0
3 400.0 500.0 600.0 700.0 800.0 900.0 1000.0
4 450.0 550.0 650.0 750.0 850.0 850.0 1050.0
5 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0
6 550.0 650.0 750.0 850.0 850.0 1050.0 1150.0
7 600.0 700.0 800.0 900 .0 1000.0 1100.0 1200.0
8 650.0 750.0 850.0 950.0 1050.0 1150.0 1250.0
II. Data Summary
Comp ER(i)*

1 5.0 15 7 11400.0 0.00053 1.00000 11400.0
2 5.0 15 7 12150.0 0.00048 0.93827 11400.0
3 5.0 15 7 12900.0 0.00047 0.88372 11400.0
4 50 15 7 13650.0 0.00044 0.83516 11400.0
5 5.0 15 7 14400.0 0.00042 0.79167 11400.0
6 5.0 15 7 15150.0 0.00040 0.75248 11400.0
7 5.0 15 7 15800.0 0.00038 0.71698 11400.0
8 5.0 15 7 16650.0 0.00036 0.68468 11400.0
II1. Estimation Procedure for RSLOW
Parameter daf Value
ALPHA 0.1
NFC 56
CHISQD 112 131.56 (df = 2 * NFC , CHISQD from tables)
MU 0.00072
RSLOW 0.97647
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CASE 2 : 8 Weibull Components in Series
------- TEST PLAN 1 - Test 15 until 7 fails for each component

I. Raw Data
Comp Ordered Failure Times (h)
i T(1) T(2) T(3) T(4) (5 T(6) T(7)
1 10.0 20.0 30.0 40.0 50.0 60.0 70.0
2 20.0 30.0 40.0 50.0 60.0 70.0 80.0
3 30.0 40.0 50.0 60.0 70.0 80.0 90.0
4 40.0 50.0 60.0 70.0 80.0 90.0 100.0
5 50.0 60.0 70.0 80.0 90.0 100.0 110.0
6 60.0 70.0 80.0 90.0 100.0 110.0 120.0
7 70.0 80.0 90.0 100.0 110.0 120.0 130.0
8 80.0 80.0 100.0 110.0 120.0 130.0 140.0
I1. Data Summary
Comp ER(i)*
i UT(i) NC(1) NF (i) TT(i) ELM(1) ER(1) TT(i)
1 5.0 15 7 S5.3E+04 1 32E-04 1.00000 S5.3E+04
2 5.0 15 7 7.2E+04 9. 79E-05 0.74406 5.3E+D4
3 5.0 15 7 9.3E+04 7 54E-05 0.57328 5.3E+04
4 5.0 15 7 1.2E+05 5,88E-05 0.45431 5.3E+04
5 5.0 15 7 1.4E+05 4 85E-05 0.36842 5.3E+04
6 5.0 15 7 1.7E+05 4 .01E-05 0.30452 5.3E+04
7 5.0 15 7 2.1E+05 3,37E-05 0.25577 5.3E+04
8 5.0 15 7 2.4E+05 2.87E-05 0.21777 5.3E+04

Parameter df Value
BETA 2.0
ALPHA 0.1
NFC 56
CHISQD 112 131.56 (df = 2 * NFC , CHISQD from tables)
MU 1.55E-04
RSLOW 0.98497

IV. Workarea

i T'(1) T'(2) T'(3) T'(4) T'(5) T'(6) T'(7)

1 1.0E+02 4.0E+402 9.0E+02 1.6E+03 2.SE+03 3.6E+03 4.9E+03
2 4.0E+02 9.0E+02 1.6E+03 2.SE+03 3.6E+03 4&.9E+03 6.4E+03
3 0.0E+02 1.6E+03 2.5E+03 3.6E+03 4.9E+03 6.4E+03 8.1E+03
4 1.6E+03 2.SE+03 3.6E+03 4.9E+03 6.4E+03 8.1E+03 1.0E+04
s 2.5E+03 3.6E+03 4.9E+03 6.4E+03 8.1E+03 1.0E+04 1.2E+04
6 3.6E+03 4 .QE+03 6.4E+03 8.1E+03 1.0E+04 1.2E+04 1.4E+04
7 4.9E+03 6.4E+03 8.1E+03 1.0E+04 1.2E+04 1.4E+04 1.7E+04
8 6.4E+03 B8.1E+03 1.0E+04 1.2E+04 1.4E+04 1.7E+04 2.0E+04
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CASE 3 : 8 Exponential Components in Series
"""" TEST PLAN 2 - Test until TT(i) for each component

I. Raw Data

No data except noting the number of failures for each component (NF(i))
I1. Data Summary

1 5.0 6 2000.0 0.00300 0.85714 1714.3 4.3
2 5.0 6 2000.0 0.00300 0.85714 1714.3 4.3
3 5.0 5 2000.0 0.00250 0.71629 1428.6 3.6
4 5.0 7 2000.0 0.00350 1.00000 2000.0 5.0
5 5.0 5 2000.0 0.00250 0.71429 1428.6 3.6
6 5.0 5 2000.0 0.00250 0.71428 1428.6 3.6
7 5.0 4 2000.0 0.00200 0.57143 1142.9 2.9
8 5.0 7 2000.0 0.00350 1.00000 2000.0 5.0
III. Estimation Procedure for RSLOW
Parameter df Value
ALPHA 0.1
NFC 45
CHISQD 92 109.76 (df = 2 * ( 1 + RFC ) , CHISQD from tables)
MU 0.00427
RSLOW 0.87180




CASE 4 : 8 Weibull Components in Series
------- TEST PLAN 2 - Test 20 until TT(i) for each component

I. Raw Data
Comp Ordered Failure Times (h)
i TT(1) T(1) T(2) T(3) T(4) T(5) T(6)
1 60.0 10.0 20.0 30.0 40.0 50.0 60.0
2 60.0 15.0 25.0 35.0 45.0 55.0
3 60.0 20.0 30.0 40.0 50.0 60.0
4 60.0 25.0 35.0 45.0 55.0
5 60.0 30.0 40.0 50.0 60.0
6 60.0 35.0 45.0 55.0
7 60.0 40.0 50.0 60.0
8 60.0 45.0 55.0
I1. Data Summary
Comp ER(i)*
i UT(i) NC(i) NF(i) ET(i) ELM(i) ER(i) ET(i)
1 5.0 20 6 6.0E+04 1.01E-04 1,00000 6.0E+04
2 5.0 20 5 6.1E+04 8,1BE-05 0.81118 5.0E+04
3 5.0 20 5 6.3E+04 7 ,.94E-05 0.78704 5.0E+04
4 5.0 20 4 6.5E+04 6 _20E-05 0.51499 4.0E+04
5 5.0 20 4 6.6E+04 6 ,04E-05 0.59918 & .0E+04
6 5.0 20 3 6.7E+404 4 4SE-05 0,44090 3.0E+04
7 5.0 20 3 6.9E+04 4 _35E-05 0.43178 3.0E+04
8 5.0 20 2 7.0E+04 2 .8BE-05 0.28394 2.0E+04
I11. Estimation Procedure for RSLOW
Parameter df Value
BETA 2.0
ALPHA 0.1
NFC 32
CBISQD 66 81.09 (4f = 2 * ( 1 + NFC ) , CHISQD from tables)
MU 1.28E-04
RSLOW 0.98425
IV. Workarea
Comp Ordered Fajlure Times (h) raised to the power of BETA

i IT' (D) T°'(1) T'(2) T°(3) T'(4) T'(5) T'(6)

1 3.6E+03 1.0E+02 4.0E+02 9.0E+02 1.6E+03 2.5E+03 3.6E+03
2 3.6E+03 2.3E+02 6.3E+02 1.2E+03 2,0E+03 3 0E+03

3 3.6E+03 4.0E+02 Q.0E+02 1.6E+03 2.5E+03 3.6E+03

4 J.6E+03 6.3E+02 1.2E+03 2.0E+03 3.0E+03

5 3.6E+03 9.0E+02 1.6E+03 2.5E+03 3.6E+03

6 3.6E+03 1.2E+03 2.0E+03 3.0E+03

7 3.6E+03 1.6E+03 2.5E+03 3.6E+03

8 3.6E+03 2.0E+03 3.0E+03
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V1. CONCLUSION
Some of the lower confidence limit procedures developed and evaluated in this
thesis are reasonably accurate for the series systems simulated for test plans with
sample sizes and truncation scenarios that are usually experienced in DoD aquisition
programs. The accuracy of these methods can be varied by modifying the degrees

of freedom parameter, F, in the )(2‘,'F term in equation (2.9), namely:

2
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The computer program can be modified with modest effort to accomodate specific
complex coherent systems so long as the components have failure time distributions
that are exponential or Weibull. This means that the computer program provided in
this thesis can be used to develop a reasonably accurate lower confidence limit for
the system reliability of a specific complex quasi-coherent system with independent
components. This can be done by choosing the failure distribution and associated
parameters of the components, the corresponding test plan parameters and the
desired level of confidence. The simulation can then be run for this set of
parameters for various equations for the degrees of freedom parameter, F, to
determine an equation for F that yields a lower confidence limit with a satisfactory
degree of accuracy.

When testing is truncated on the number of failures, a reasonably accurate
procedure existed for all 3 cases of systems (all exponential, all Weibull and mixed)
that were simulated when (a) the sample size of the components was 10 or larger,
and, (b) the ratio of the number of failures to the sample size was at least 0.5. When
testing was truncated by planned test time, reasonably accurate procedures were

found for cases where the expected number of failures was at least 7.
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VII. RECOMMENDATIONS
The computer program developed in this thesis facilitates the development of
lower confidence limit procedures for explicit quasi-coherent systems. Systems other
than series systems with large numbers of components (eg. 30) should be simulated
to test the versatility of the general lower confidence limit methods used here.
Modified estimates for the B (shape) parameter in the Weibull failure time
distribution and the parameter r = X/}, should be explored in an attempt to find

more accurate procedures.
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APPENDIX A : Derivation of Formula Used

Suppose T has an exponential distribution with failure rate A. Suppose ;) T,

T3 » Ty are the first » ordered statistics in a random sample of size n from this

exponential distribution. Let S be defined by

S = 21: Ty + (n-r)T,
It is well known that 2\S has a Chi-Square distribution with 2r degrees of freedom
(See Ref.3 p 488). The maximum likelihood estimator for X is given by

=21
S

We seek an unbiased estimator for A . Suppose X has a Chi-Square distribution

with 2r degrees of freedom, then

f(x;r) =

x T lexp(-2)
2T(r) P 2

and the integral of this function from zero to infinity equals 1 (See Ref.3).

1 1 -1)- x
E—- - r-1-1 ---dx
() =[5m0 exp(-3)

5 2'T(r)
- I'(r—l)w 1 x r-D-1 _ﬁdx
2r(r) J 211 (r-1) exp( 2)
o1
S 201
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Then

Therefore

Sy ry _ 1 - i
E()\) = E(g) r2)E( 2)\5) =)

E(’_;l_ﬁ) - E(’_;l) Y
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APPENDIX B : Users’ Guide for RETP1

Reliability Estimation Test Plan 1 (RETP1).

by YEE, Kah-Chee
July 91

1. Brief Description.

RETP1 is a computer program written in FORTRAN that runs on the Amdahl
mainframe at NPGS. It allows the user to simulate exponential and Weibull failure
times of component items being tested to evaluate the accuracy of a confidence limit

estimation procedure based on Type II data censoring (that is, testing n, items of
component i until f; of them failed).

2. Program Input. (IN1.DATA)

The input of the program are specified to the program via an input file called
IN1.DAT. A sample input file is shown below.

This file contains the inputs required by the RETP1 model.
Update only the numerical values between dotted lines as appropriate.
Do not delete any of the comment lines. (IN1.DAT) 14 May 91

C Value Type Units Description Variable
C ......................................................................
16807.0 Real - initial random seed ISEED
8 Int - total # of components in system NCOMP
4 Int - # of EXPonential components NEXP
4 Int - # of WEIbull components NWEI
0 Int - # of GEOmetric components NGEO
0.01 Real - tolerance for MLE TOL
0.20 REAL - DESIRED SIGNIFICANCE LEVEL ALPHA
1000 Int - # of replications desired NREP
3 Int - test case number TCN
1 = all EXP
2 = all WEI

3 = EXP + WEI
4 = EXP + WEI + GEO
8 Int - number of cut sets NCS




C TEST PLAN : Testing NC(I) items of component i
C until NF(I) of them fails. (Use REAL numbers ONLY!!!)
Cmm e m e mmm e e mae e emae e e e e
C Comp Comp Comp Parameters Util Test Plan Inputs
C Number Type Scale Shape Time/Cvcle # Comp # Failed
c 1 TY(I) PARMI(I) PARM2(I) UT(I) UC(I) NC(I) NF(I)
C Int Int Real Real (hrs) Int Int Int
Crmmmmmmcececeecccea—ecceaemeeee—meeeea-aseeeacecmcemcmcemaaceee—————a-
1.0 1.0 0.0020 1.0 10.0 15.0 3.0
2.0 1.0 0.0040 1.0 10.0 15.0 3.0
3.0 1.0 0.0060 1.0 10.0 15.0 3.0
4.0 1.0 0.0080 1.0 10.0 15.0 3.0
5.0 2.0 0.0020 2.0 10.0 15.0 3.0
6.0 2.0 0.0040 2.0 10.0 15.0 3.0
7.0 2.0 0.0060 2.0 10.0 15.0 3.0
8.0 2.0 0.0080 2.0 10.0 15.0 3.0
o
C Note : TY(I)=1 EXPONENTIAL P(surv) = exp(-PARM1)*T)
c TY(I)=2 WEIBULL P(surv) = exp(-(PARM1*T)**PARM2)
C TY(I)~3 GEOMETRIC P(surv) = PARM1#**N
[ O T L T T gy
C SYSTEM CONFIGURATION : Identification of CUT SETs
c - min groups of components that have to fail
c for the system to fail.
S
C Cut Set # in Set List of Components in Cutset
C J COMP(J,1) COMP(J,2) ... up to COMP(J,1) components
o S
1 1 1 0 0 0 0 0 0 0 O
2 1 2 0 000 0O 0 00O
3 1 300 0 0 0 O O00DO
4 1 4 0 0 0 0 0 0 0 O
5 1 5 0 0 0 0O 0 0 0 O
6 1 6 0 0 0 0 0 0 0 O
7 1 7 0 00 OO O O O
8 1 8 0 00 00O 0 0 O

3. Program Flow and Logic. (NAMELDEF, PARML1.DEF and RETP1.FOR)

Input parameters are first read in by the program by calling the INPUT
subroutine. The program then evoke the SIM subroutine which generates the
random failure times and compute the key statistics required in the procedure. The
next subroutine EVAL determines the measures of accuracy for run. REPORT is
the subroutine which generates the output file for the run OUT1.DAT.

The variables in the program RETPIL.FOR are described in the file
NAMEILDEF as listed below.
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This file contains the declaration for input and output variables
used in the the RETPl model. (NAME1l.DEF) 14 May 91

................

ISEED = initial random seed selected.

SEED = current random seed.

RS = true overall series system reliability.

ALPHA = level of significance disired.

NREP = number of replications desired for the simulation.
TPN = test plan number (1).

TCN = test case number (1, 2, 3 or 4).

NCOMP = total number of components in the system.

NEXP = number of components with EXP failure times.
NWEI = number of components with WEI failure times.
NGEO = number of components with GEO failure times.

TOL = desired tolerance for MLE of WEI shape parameter.

Distribution: EXPonential WEIbull GEOmetric

TY(I) = type: 1 2 3
PARM(1,1): Scale(l/hr) Scale(1l/hr) Prob
PARM(2,1): - Shape -

UT(1) = utilization time (hrs) for component i (EXP and WEI).

UC(I) = utilization cycles for component i (GEO only).

NC(I) = number of test samples (sample size) for cmponent i.

NF(1) = desired number of failures in test for component 1i.

NCS = number of cut-sets for the system.

COMP(J,K) = kth parameter of cut-set j (first being the no. of
components belonging to the cut-set).

Assumed Variables.

MAXCOMP = maximum number of components allowed in the system.
MAXREP = maximum number of replications permitted.

MAXCUT = maximum number of cut-sets.

Program and Output Variables.
RS = true overall system reliability.
TT(1) = total accumulated failure time (hr) for component i
(EXP and WEI only).
TC(1) = total accumulated cycles to failure (incl. failure cycle)
for component i (GEO only).
EBETA(I) = estimate for shape parameter of component i (if Weibull).
REL1(J) =~ actual reliability for cut-set j.
REL2(J) = computed reliability for cut-set j for current replication.
EIM(I) = estimated component failure rate (l/hrs) for component 1i.
EILMAX(M) = max estimated component failure rate for rep m (1l/hrs).
ER(I) = ratio of estimated failure rate to LMAX.
NFC(M) = total number of failed test components.
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LMU(M) = upper confidence bound for failure rate (l/hrs),
RSL(M) = lower confidence limit estimated for system reliability
for the mth replication.
ORSL(M) = ordered RSL(M) (ascending).
RSLOW = (1-ALPHA)x100 percentile of set of RSL(M).
LEVEL = achieved co.ufilence level, ie. proportion of RSL(M) that
are lesser than RS (conservative estimate).

<= END OF NAMEL.DEF == - =-cecmmamooeaaacaa o ieoamaaomiaoceaamas

sNeNsNesEesEo RN e N

Together with the main program in RETP1.FOR are the other subroutines
needed in the simulation. The declaration of variables is done in the file
PARMI1.DEF. Relevant descriptions are included as comment lines in the source
code to help explain the program segments. A listing of PARM1.DEF and
RETP1.FOR is given below.

C This file contains the declaration for input and output variables
C used in the the RETPl model. (PARM1.DEF) 14 May 91

INTEGER MAXCOMP, MAXREP

PARAMETER( MAXCOMP = 100 , MAXREP = 1000 , MAXCUT = 20 )

REAL*8 ISEED, SEED

INTEGER NREP, TCN, NCOMP, NEXP, NWEI, NGEO, NCS,
NC(MAXCOMP), NF(MAXCOMP), TY(MAXCOMP), NFC(MAXREP),
UC(MAXCOMP), TC(MAXCOMP), COMP(MAXCUT,MAXCOMP)

REAL*8 RS, ALPHA, UT(MAXCOMP), TT(MAXCOMP),

* *

* PARM(2 ,MAXCOMP), ELM(MAXCOMP), ER(MAXCOMP),
* IMU(MAXREP), RSL(MAXREP), ORSL(MAXREP),
* ELMAX (MAXREP), RSLOW, LEVEL, TOL, EBETA(MAXCOMP),
* REL1 (MAXCUT), REL2(MAXCUT)
c
COMMON/BLOCK1/ISEED, SEED, NREP, TCN, NCOMP, NC, NF, NEXP, NWEI,
* NGEO, NCS, TY, NFC, UC, TC, COMP
COMMON/BLOCK2 /RS, ALPHA, UT, TT, PARM, ELM, ER, IMU,
* RSL, ORSL, ELMAX, RSLOW, LEVEL, TOL, EBETA,
* REL1, REL2
c
C-- END OF PARML.DEF ------cccccmcmcc it e e e oo oo s
C
[ R R I A A R I
C This file contains the main program and the subroutines
C for the Reliability Estimation Test Plan 1 (RETPl) model.
C (RETP1.FOR) - runs on a IBM PC Compatible.
C
C MAINFRAME VERSION. ..
C
C Test Plan 1 : Testing NC(I) items for component i

43




a0

[eNeNe!

----------- Until NF(I) of them fails.

by Yee Kah-Chee SMC 2802.
14 May 91.

PROGRAM RETP1
Include the declaration files.

INCLUDE 'NAMEl1 DEF’
INCLUDE 'PARM1 DEF’

Read in input data.
CALL INPUT
Activate simulation.

CALL SIM

Process and evaluate output data.

CALL EVAL
Generate simulation report.
CALL REPORT

STOP
END

[eNeoNeNeNe! (@]

(9]

......................................................................

SUBROUTINE INPUT
This subroutine reads in the inputs for the RETPl model.
Include the declaration file.

INCLUDE 'PARM1 DEF’

INTEGER I, J, K, DUM2(11l)
REAL*8 DUM1(7)

Read data from 'IN1.DAT' designated as logic unit 1.

OPEN(UNIT=1)
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READ(1,10)

10 FORMAT(1X
READ(1,*)
READ(1,%)
READ(1,%*)
READ(1,*)
READ(1,*)
READ(1,%*)
READ(1,%*)
READ(1,%*)
READ(1,%*)

1177)
ISEED

NCOMP
NEXP
NWEI
NGEO
TOL
ALPHA
NREP
TCN

READ(1,20)

20 FORMAT(1X
READ(1,%*)

/17)
NCS

READ(1,30)

30 FORMAT(1X

DO 50 K =

SI1177777)

1, NCOMP

READ(1,*) DUM1

I = NINT(DUM1(1))

TY(I) =

NINT(DUM1(2))

IF (TY(I).EQ.1) THEN
PARM(1,I) = DUM1(3)
PARM(2,1) = DUM1(4)

UT(I)
NC(I)
NF(I)

= DUM1(5)
= NINT(DUM1(6))
= NINT(DUM1(7))

EBETA(I) = O

ELSEIF (TY(I).EQ.2) THEN
PARM(1,I) = DUM1(3)
PARM(2,I) = DUM1(4)

UT(I)
NC(I)
NF(I)

= DUM1(5)
= NINT(DUM1(6))
= NINT(DUM1(7))

ELSEIF (TY(I).EQ.3) THEN
PARM(1,I) = DUM1(3)
PARM(2,1) = DUM1(4)

uc(I)
UT(I)
NC(I)
NF(I)
ENDIF

NINT(DUM1(5))
DUM1(5)

NINT(DUM1(6))
NINT(DUM1(7))

50 CONTINUE

READ(1,60)

60 FORMAT(1X
DO 80 I =

S1111777777)
1, NCs
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READ(1,*) DUM2
J = DUM2(1)
COMP(J,1) = DUM2(2)
DO 70 K = 1, COMP(J,1)
COMP(J,K+1) = DUM2(K+2)
70 CONTINUE
80 CONTINUE
CLOSE(UNIT=1)
RETURN
END

SUBROUTINE SIM

This subroutine simulates NREP possible outcomes of the test plan
desired in order to obtain the raw estimates of ILMU(M) and RSL(M)
for each of the replication.

Include the declaration file
and declare local variables.

INCLUDE 'PARM1 DEF'’

INTEGER I, J, K, M, ISUM, KEY
REAL*8 UNI

REAL*8 SUM, PROD,
* FT (MAXCOMP), OFT(MAXCOMP)

SEED = ISEED
Compute overall true system reliability RS.

RS = 1.0
DO 30 J = 1, NCS
PROD = 1.0
DO 20 T = 1, COMP(J,1)
K = COMP(J,I+1)
PROD = PROD*( 1 - SURV(TY(K),PARM(1,K),PARM(2,K),UT(K)) )
20 CONTINUE
REL1(J) = 1.0 - PROD
RS = RS * REL1(J)
30 CONTINUE

Start of Simulation.
(Initialize replication counter M).

M=1
DO WHILE (M.LE.NREP)

PRINT 35, M

46




sHeNsREeEes NN NS

(@]

QOO

a0

aOoan

35 FORMAT(1X, 'Replication ',I4)

Test Plan : Sample and determine unknown TT(I)
--------- with known NC(I) until NF(I) fails.

Generate NC(I) failure times, put them in ascending order
with the smallest failure time on the top of the list.

DO 70 T = 1, NCOMP

DO 40 K = 1, NC(I)
CALL LRNDPC(SEED,UNI,1)

IF(TY(I).EQ.1) THEN
FT(K) = -LOG(UNI)/PARM(1,I)
ELSEIF(TY(I).EQ.2) THEN
FT(K) = (1.0/PARM(1,1))*(-LOG(UNI))%**(1.0/PARM(2,1))
ELSEIF(TY(I).EQ.3) THEN
FT(K) = 1.0
DO WHILE (UNI.LT.PARM(1,1))
FT(K) = FT(K) + 1.0
CALL LRNDPC(SEED,UNI,1)
ENDDO
ENDIF
40 CONTINUE

Bubble Sort the failure times in ascending order.
CALL BUBBLE(NC(I),FT,OFT)

Compute the total time accumulated in the test and the estimate
for the failure rate of the component as in the procedure.

IF (TY(I).NE.2) THEN
SUM = 0.0
DO 50 K = 1, NF(I)
SUM = SUM + OFT(K)
50 CONTINUE
TT(1) = FLOAT(NC(I)-NF(I))*OFT(NF(I)) + SUM
IF (TY(I).EQ.1) THEN
EIM(I) = FLOAT(NF(I)-1)/TT(I)
ELSEIF (TY(I).EQ.3) THEN
EIM(I) = FLOAT(NF(I)-1)/TT(I)
ENDIF
ELSEIF (TY(I).EQ.2) THEN

PRINT 55, M, I
55 FORMAT(1X,'REP = ',I3, ' Comp = ',I3,/)

CALL MLESHAPE(OFT,NC(I),NF(I),TOL,1.DO0,EBETA(I))
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EBETA(I) = BN(NC(I))*EBETA(I)

SUM = 0.0
DO 60 K = 1, NF(I)
SUM = SUM + OFT(K)**EBETA(I)
60 CONTINUE

TT(I) = FLOAT(NC(I)-NF(I))*OFT(NF(I))**EBETA(I) + SUM
EIM(I) = FLOAT(NF(I))/TT(I)
ENDIF

70 CONTINUE
Determine the total number of failed test items.

ISUM = O
DO 80 I = 1, NCOMP
ISUM = ISUM + NF(I)
80 CONTINUE
NFC(M) = ISUM

Determine the maximum failure rate estimate
and identify that component.

ELMAX(M) = 0.0
KEY = 0
DO 90 I = 1, NCOMP
IF (ELM(I).GT.ELMAX(M)) THEN
ELMAX(M) = ELM(I)
KEY = I
ENDIF
90  CONTINUE

Compute the ratios of the failure rate estimates to their maximum.
DO 100 I = 1, NCOMP
ER(I) = ELM(I) / ELMAX(M)
100 CONTINUE
Determination of LMU(M)
SUM = 0.0
DO 110 I = 1, NCOMP
SUM = SUM + (ER(I)*TT(I1))
110  CONTINUE
IMU(M) = CHISQD(1-ALPHA,2*(NFC(M)-NCOMP))/(2*SUM)

Compute estimate of overall reliability RSL(M) for the system.
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RSL(M) = 1.0
DO 130 J = 1, NCS
PROD = 1.0
DO 120 I = 1, COMP(J,1)
K = COMP(J,I+1)
IF (TY(K).EQ.1) THEN
PROD = PROD*(1 - SURV(TY(K),LMU(M)*ER(K),EBETA(K),UT(K)))
ELSEIF (TY(K).EQ.2) THEN
PROD = PROD*(1 - SURV(TY(K), (LMU(M)*ER(K))**(1./EBETA(K)),
* EBETA(K) ,UT(K)))
ELSEIF (TY(K).EQ.3) THEN
PROD = PROD*(1 - SURV(TY(K),1l.DO-IMU(M)*ER(K),0.DO,UT(K)))
ENDIF
120  CONTINUE
REL2(J) = 1.0 - PROD
RSL(M) = RSL(M) * REL2(J)
130 CONTINUE

Increment replication counter.

SUBROUTINE EVAL

This subroutine calls BUBBLE to sort the array RSL({NREP) in
ascending order to get an ordered array ORSL(NREP). It also
determine the estimate for RSLOW at the specified significance
level ALPHA and the value of LEVEL in which ORSL(LEVEL) is closest
to the true reliability RS.

Include the declaration files
and declare the local variables.

INCLUDE 'PARM1 DEF’
INTEGER INDEX
REAL*8 DIFF
Order the array RSL(NREP) in ascending order.
DO 10 M = 1, NREP
ORSL(M) = RSL(M)
10 CONTINUE

Bubble Sort. Sink the larger of the pair.
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CALL BUBBLE(NREP,RSL,ORSL)

Determine the (1-ALPHA)% lower confidence bound for the system
reliability.

RSLOW = ORSL(NINT(NREP*(1-ALPHA)))

Finding the % confidence level for the true reliability RS.
(ie. the proportion of RSL(M) lesser than RS)

DIFF = 1.0

INDEX = O

DO 200 M = 1, NREP
IF (ABS(ORSL(M)-RS).LT.DIFF) THEN
DIFF = ABS(ORSL(M)-RS)

INDEX = M
ENDIF
200 CONTINUE
LEVEL = FLOAT(INDEX)/NREP
Record evaluated parameters in RAW1.DAT (unit 2).
OPEN(UNIT=2)
WRITE(2,300)
300 FORMAT(1lX, ° M LMU(M) ELMAX (M) RSL(M) ',
* ’ ORSL(M) NFC(M) ")

DO 500 M = 1, NREP
WRITE(2,400) M,LMU(M),ELMAX(M),RSL(M),ORSL(M),NFC(M)
400 FORMAT(1X,16,2F12.7,2F12.7,110)
500 CONTINUE
CLOSE(UNIT=2)

RETURN
END

SUBROUTINE REPORT

This subroutine record the simulation results into the ‘OUT1.DAT’
file as logic unit 3.

Include the declaration files
and declare local variables.

INCLUDE ’'PARM1 DEF’
INTEGER I, J, K, DUM(10)
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C Write to output file 'OUT1.DAT’' designated as logic unit 3.
Cc

OPEN(UNIT=3)
C

WRITE(3,10)

WRITE(3,20) NREP

WRITE(3,25)

WRITE(3,26)

WRITE(3,30)

WRITE(3,40)

WRITE(3,50) ISEED,NCOMP,ALPHA,TOL,NCS,TCN

WRITE(3,60)
DO 200 I = 1, NCOMP
WRITE(3,70) I,TY(I),PARM(1,I),PARM(2,I),UT(I),NC(I),NF(I)
200 CONTINUE
WRITE(3,80)
WRITE(3,90)
DO 300 I = 1, NCOMY
WRITE(3,100) I,NF(I),TT(I),ELM(I),ER(I),EBETA(I)
300 CONTINUE
WRITE(3,110)
WRITE(3,120)
DO 500 J = 1, NCS
DO 400 K = 1, 10
DUM(K) = COMP(J,K)
400  CONTINUE
WRITE(3,130) J,DUM,REL1(J),REL2(J)
500 CONTINUE
WRITE(3,140)
WRITE(3,150) RS,ELMAX(NREP),LMU(NREP),RSLOW, LEVEL

C
10 FORMAT(1X,'OUT1.DAT : OQOutput File of the RETPl simulation’)
20 FORMAT(1X,' after ',I5,’ replications’,/)
25 FORMAT(1X, 'COMMENTS : 8 COMPONENTS IN SERIES )
26 FORMAT(1X,' DF = 2 * (NFC - NCOMP) ',/)
30 FORMAT(1X, 'Input Parameters:’,/)
40 FORMAT(1X, ' ISEED NCOMP ALPHA TOL NCS TCN', /)

50 FORMAT(1X,F10.1,18,F8.4,F8.5,216,/)
60 FORMAT(1X,’' I TY(I) PARMI(I) PARM2(I) UT(I) NC(I) NF(I)',/)
70 FORMAT(1X,I3,16,2F9.5,F8.2,218)
80 FORMAT(1X,/,'Output Parameters for the LAST Replication:’,/)
90 FORMAT(1X,’' I NF(I) TT(I) ELM(I) ER(I)’,
* ! EBETA(I)', /)
100 FORMAT(1X,I13,16,E16.7,2F14.7,F14.7)
110 FORMAT(1X,/,’'Cut-Set Data:’',/)
120 FORMAT(1X,’' J NUM Component List ",
* ' REL1 REL2(M)',/)
130 FORMAT(1X,13,15,913,2F12.9)
140 FORMAT(1X,/,’ RS ELMAX (M) UM ',
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* ' RSLOW LEVEL',/)
150 FORMAT(1X,5F12.7,/)

CLOSE(UNIT=3)

RETURN
END
This portion of the file contains functions and subroutines
used in the RETPl model.
- 14 May 91
- by Yee Kah-Chee SMC 2802
A. Random Number Generating Subroutine (LRNDPC).
(Courtesy of Mr. David Lim Hung-Heng)

......................................................................

SUBROUTINE LRNDPC (DSEED,U,N)

INTEGER N, I

REAL*8 U(N)

REAL*8 D31M1, DSEED, D31
D31IM1=2%%*31 - 1

D31 =2%%31

DATA D31M1,/2147483647.D0/
DATA D31 /2147483648.D0/
DO 5 I=1,N
DSEED = DMOD (950706376 .DO*DSEED,D31M1)
DSEED = DMOD(16807.DO*DSEED,D31M1)
5 U(I) = DSEED / D31 ,
RETURN
END

FUNCTION SURV(TYPE,PAR1,PAR2,UTIL)

This function returns the survival probability of the component of
different types (TYPE) with scale (PAR1l) and shape (PAR2) parameters
given the specified utilization times or cycles (UTIL).

INTEGER TYPE, N
REAL*8 PAR1, PAR2, UTIL

IF (TYPE.EQ.1l) THEN
SURV = EXP(-(PAR1*UTIL))
ELSEIF (TYPE.EQ.2) THEN
SURV = EXP(-((PAR1*UTIL)**PAR2))
ELSE
N = NINT(UTIL)
SURV = PAR1**N
ENDIF
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SUBROUTINE BUBBLE(N,LIST,OLIST)

This subroutine performs a bubble sort in increasing order (ie. sink
the greater numeral) for the first N terms in an array LIST and
returns the result in OLIST.

LOGICAL DONE
INTEGER N, K, PAIR
REAL*8 LIST(*), OLIST(*)

Sink the larger of the pair.

PO 50 K =1, N
OLIST(K) = LIST(K)
50 CONTINUE
PAIR = N - 1
DONE = .FALSE.
DO WHILE (.NOT.DONE)
DONE = .TRUE.
DO 100 K = 1, PAIR
IF (OLIST(K).GT.OLIST(K+1l)) THEN
TEMP = OLIST(K)
OLIST(K) = OLIST(K+1)
OLIST(K+1) = TEMP
DONE = .FALSE.
ENDIF
100 CONTINUE
PAIR = PAIR - 1
ENDDO
END

.......................................................................

.......................................................................

FUNCTION BN(I)

This functon returns the value of the unbiased factor for the biased
maximum likelihood estimate of the shape parameter of a Weibull
distribution with a sample size of N.

INTEGER 1
IF (I.LE.S5) THEN
BN = (I1*0.699)/(5.0)
ELSEIF (I.EQ.6) THEN
BN = 0.752
ELSEIF (I.EQ.7) THEN
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BN = 0.786
ELSEIF (I.EQ.8) THEN
BN = 0.82
ELSEIF (I.EQ.9) THEN
BN = 0.8395
ELSEIF (I.EQ.10) THEN
BN = 0.859
ELSEIF (1.EQ.11) THEN
BN = 0.871
ELSEIF (I.EQ.12) THEN
BN = 0.883
ELSEIF (I.EQ.13) THEN
BN = 0.892
ELSEIF (I.EQ.14) THEN
BN = 0.901
ELSEIF (I.EQ.15) THEN
BN = 0.9075
ELSEIF (I1.EQ.16) THEN
BN = 0.914
ELSEIF (I.EQ.17) THEN
BN = 0.9185
ELSEIF (I1.EQ.18) THEN
BN = 0.923
ELSEIF (I.EQ.19) THEN
BN = 0.927
ELSEIF (I.EQ.20) THEN
BN = 0.931
ELSEIF (I.LE.25) THEN
BN = 0.9314(I1-20)*0.014/5.0
ELSEIF (I.LE.30) THEN
BN = 0.945+(I1-25)*0.01/5.0
ELSEIF (I.LE.40) THEN
BN = 0.955+(I-30)*0.011/10.0
ELSEIF (I.LE.60) THEN
BN = 0.966+(I1-40)*0.012/20.0
ELSEIF (I.LE.80) THEN
BN = 0.978+(I-60)*0.006/20.0
ELSEIF (I.LE.100) THEN
BN = 0.984+(I1-80)*0.003/20.0
ELSEIF (I.LE.120) THEN
BN = 0.987+(I-100)*0.003/20.0
ELSE
BN = 1.0
ENDIF
RETURN
END

SUBROUTINE MLESHAPE(T,N,R,DEL,B,BNEW)
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This subroutine returns a biased estimator (BNEW) for a Weibull
shape parameter using the Newton-Raphson's Method of Successive
Approximation. The data parameters consist of an ascending ordered
list of failure times (T), sample size (N), number of failed samples
(R), tolerance for convergence (DEL) and an initial estimate of the
shape parameter (B).

LOGICAL DONE

INTEGER N, R, I

REAL*8 GFUNCT, GPRIME, B, BOLD, BNEW, T(*), DEL,
* TERM1, TERM2, TERM3, SUM1, SUM2, SUM3, SUM4, STEP

BNEW = B
DONE = _FALSE.

DO WHILE (.NOT.DONE)

DONE = .TRUE.

TERM1 = FLOAT(N-R)*(T(R)**BNEW)

TERM2 = FLOAT(N-R)*(T(R)**BNEW)*LOG(T(R))

TERM3 = FLOAT(N-R)*(T(R)*%BNEW)*LOG(T(R))*LOG(T(R))
SUM1l = 0.0

SUM2 = 0.0

SUM3 = 0.0

SUM4 = 0.0

DO 50 I =1, R
SUM1 = SUM1
SUM2 = SUM2
SUM3 = SUM3
SUM4 = SUM4
50 CONTINUE

T(1)**BNEW
(T(I)**BNEW)*LOG(T(I))
(T(I)**BNEW)*LOG(T(I))*LOG(T(I))
LOG(T(I))

+ 4+ + +

GFUNCT = (SUM2+TERM2)/(SUM1+TERM1) - (1.0/BNEW)

* - (1.0/FLOAT(R))*SUM4

GPRIME = (1.0/(SUML+TERML)#*%2)*( (SUM1+TERM1)*(SUM3+TERM3)
* - (SUM2+TERM2)*%2 )
* + (1.0/BNEW¥*2)

PRINT 60, GFUNCT,GPRIME,BNEW
60 FORMAT(1X, ‘GFUNCT =',F8.3,’ GPRIME =’ ,F8.3,’ BNEW =',F8.3)

Control magnitude of the marching step towards convergence
as no more than 0.1.

IF ((GFUNCT.LT.O) .AND. (GPRIME.GT.0)) THEN
STEP = VMAX(-.1DO, (GFUNCT/GPRIME))
ELSEIF ((GFUNCT.GT.O) .AND. (GPRIME.LT.O)) THEN




STEP = VMAX(-.1DO, (GFUNCT/GPRIME))
ELSE

STEP = VMIN(.1DO, (GFUNCT/GPRIME))
ENDIF

BOLD = BNEW
BNEW = BNEW - STEP

@}

Check for convergence of the MLE for the shape parameter B.

IF (ABS(BOLD-BNEW).GT.DEL) THEN
DONE = .FALSE.
ENDIF

Avoid overflow error due to large MLE value caused by small
GPRIME (slope) as GFUNCT approaches to near zero.
Stop when magnitude of BNEW exceeds 7.

s NeoNeoNeNS]

IF (BNEW.GT.7.0) THEN
BNEW = BOLD
DONE = .TRUE.

ENDIF

ENDDO
RETURN
END

O

FUNCTION CHISQD(P,N)

Modified version of Algorithm 451 from Comunications of the ACM
Aug 1977 Vol.16 No.8

This function evaluates the quantile at the probability level P
(left tail area) for the Chi-square distribution with
N degrees of freedom.

sNoNeoNeoNoNoNeNe]

REAL*8 P

REAL X

INTEGER IF

DIMENSION C(21), A(19)

DATA C/ 1.565326E-3,
1.060438E-3,
-6.950356E-3,
-1.323293E-2,
2.277679E-2,
-8.986007E-3,
-1.513904E-2,
2.530010E-3,

* % % % * % %
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30

* % * ok

* % % % % %k % % % * % % F

******************

-1.450117E-3,
5.169654E-3,
-1.153761E-2,
1.128186E-2,
2.607083E-2,
-0.2237368,
9.780499E-5,
-8.426812E-4,
3.125580E-3,
-8.553069E-3,
1.348028E-4,
0.4713941,
1.0000886 /
DATA A/ 1.264616E-2,
-1.425296E-2,
1.400483E-2,
-5.886090E-3,
-1.091214E-2,
-2.304527E-2,
3.135411E-3,
-2.728484LE-4,
-9.699681E-3,
1.316872E-2,
2.618914E-2,
-0.2222222,
S.406674E-5,
3.483789E-5,
-7.274761E-4,
3.292181E-3,
-8.729713E-3,
0.4714045,
1. /
IF (N-2) 10, 20, 30
CALL XFROMP(.5*(1.-P),X,IF)
CHISQD = X
CHISQD = CHISQD*CHISQD
RETURN
CHISQD = -2.*LOG(1.-P)
RETURN
F=N
F1 = 1./F
CALL XFROMP(P,X,IF)
T ~X
F2 = SQRT(F1)*T
IF (N.GE.(2+INT(4.*ABS(T)))) GO TO 40
CHISQD = (((((((G(1)*F2+C(2))*F2+C(3))*F2+C(4))*F2
+C(5) ) *F2+C (6))*¥F2+C(7) ) *¥F1+((((((C(B)+C(9)*F2)*F2
+C(10))*F2+C(11))*F2+C(12) ) *F2+C(13) ) *F2+C(14)))*F1+
(((((C(15)*F2+C(16))*F2+C(17))*F2+C(18))*F2
+C(19))*F2+C(20))*F2+C(21)
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GO TO 50
40 CHISQD=(((A(1)+A(2)*F2)*F1+(((A(3)+A(4)*F2)*F2
+A(5))*F2+A(6) ) )*F1+(((((A(7)+A(8)*F2)*F2+A(9))*F2
+A(10))*F2+A(11))*F2+A(12)))*F1+(((((A(13)*F2
+A(14) )*F2+4A(15) )*F2+A(16) )*F2+A(17) ) *F2*F2
+A(18))*F2+A(19)
50 CHISQD = CHISQD*CHISQD*CHISQD*F

RETURN

END

* % % %

SUBROUTINE XFROMP(P,X,IFAULT)
Algorithm AS 24 J.R.STAT.SOC. C. (1969) Vol.18. No.3.

This subroutine computes the standard normal deviate X for
the specified left tail area P.

REAL*8 P

DIMENSION A(5)

DIMENSION CONNOR (17), HSTNGS(6)
DATA CONNOR/ 8.0327350124E-17,
.448326464L4E-15,
.4668270103E-14,
.9554295164E-13,
.9477940136E-12,
.3507027951E-11,
.0892221037E-9,
.3122532964E-8,
.4503852223E-7,
.4589169001E-6,
.3227513228E-5,
.0683760684E-4,
.5757575758E-4,
.6296296296E-3,
.3809523810E-2,
.1,

.33333333333 /

* % % K % X X ® % % ¥ H % ¥ F *
CONPNHRPREFEHMFEDWOWWN

DATA RTHFPI / 1.2533141373 /
DATA RRT2PI / 0.3989422804 /

DATA TERMIN / 1.0E-11 /

DATA HSTNGS / 2.515517,
* 0.802853,
* 0.010328,
* 1.432788,
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* 0.189269,

* 0.001308 /
IFAULT = 1
IF ((P.LE.0.0).OR.(P.GE.1.0)) GO TO 100
IFAULT = 0

Get first approximation XO to deviate by Hastings' formula

B=P
IF(B.GT.0.5) B=1.0 - B

F = - LOG(B)

E = SQRT(F+F)

X0 = -E + ((HSTNGS(3)*E+HSTNGS(2))*E+HSTNGS(1))/
* { ( (HSTNGS (6) *E+HSTNGS (5) ) *E+HSTNGS (4) ) *E+1.0)
IF (X0.LT.0.0) GO TO 1

X0 = 0.0

PO = 0.5

X1 = -RTHFPI

GO TO 7

Find the area PO corresponding to XO

1 Y = XO**2
IF (XO0.LE.-1.9) GO TO 3
Y = -0.5%Y

(1) series approximation

PO = CONNOR(1)
DO 2 L=2,17
2 PO = PO*Y + CONNOR(L)
PO = (PO*Y+1.0)*XO
X1 = - (PO+RTHFPI)*EXP(-Y)
PO = PO*RRT2PI + 0.5
GO TO 7

(2) continued fraction approximation

32 =1.0/Y
A(2) = 1.0
A(3) = 1.0
ALYy =Z + 1.0
A(5) = 1.0
W=2.0

4 DO 6 1L=1,3,2
DO 5 J=1,2
K=L+1J




KA =7 - K
5 A(K) = A(KA) + A(K)*W*Z

6W=W+1.0
APPRXU = A(2)/A(3)
APPRXL = A(5)/A(4)
C = APPRXU - APPRXL
1IF (C.GE.TERMIN) GO TO 4
X1 = APPRXL/XO
PO = -X1*RRT2PI*EXP(-0.5%*Y)
C
C Get accurate value of deviate by Taylor Series
C (X1, X2, X3 are derivatives for the Taylor Series
C
7 D = F + LOG(PO)
X2 = XO*X1#X1 -X1
X3 = X1**3 + 2. 0*XO*X1*X2 -X2
X = ((X3*D/3.0+X2)*D/2.0+X1)*D + XO
IF (P.LE.0.5) GO TO 100
X=-X
100 RETURN
END

FUNCTION VMAX(X,Y)
REAL*8 X, Y
IF(X.GT.Y) THEN
VMAX = X
ELSE
VMAX = Y
ENDIF
RETURN
END

FUNCTION VMIN(X,Y)
REAL*8 X,Y
IF(X.LT.Y) THEN
VMIN = X
ELSE
VMIN = Y
ENDIF
RETURN
END

4. Program Output. (OUT1.DAT)
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The result for the simulation run based on the input parameters specified in
IN1.DAT are computed and written to the file OUT1.DAT. A sample of this file is
as follows.

OUT1.DAT : Output File of the RETPl simulation
after 1000 replications
COMMENTS : 8 COMPONENTS IN SERIES

DF = 2 * (NFC - NCOMP)

Input Parameters:

ISEED NCOMP  ALPHA TOL NCS TCN
16807.0 8 0.2000 0.01000 8 3

I TY(I) PARM1(I) PARM2(I) UT(I) NC(I) NF(1)

1 1 0.00200 1.00000 10.00 15 3

2 1 0.00400 1.00000 10.00 15 3

3 1 0.00600 1.00000 10.00 15 3

4 1 0.00800 1.00000 10.00 15 3

5 2 0.00200 2.00000 10.00 15 3

6 2 0.00400 2.00000 10.00 15 3

7 2 0.00600 2.00000 10.00 15 3

8 2 6.00800 2.00000 10.00 15 3

Output Parameters for the LAST Regpiication:
I NF(I) TT(1) ELM(I) ER(I) EBETA(I)
1 3  0.1969091E+04 0.0010157 0.1703872 0.0000000
2 3  0.3355078E+03 0.0059611 1.0000000 0.0000000
3 3 0.5999981E+03 0.0033333 0.5591815 0.0000000
4 3 0.6423594E+03 0.0031135 0.5223055 0.0000000
5 3 0.2563836E+16 0.0000000 0.0000000 6.3524983
6 3  0.8186629E+07 0.0000004 0.0000615 2.9571536
7 3 0.5675037E+09 0.0000000 0.0000009 4.2418658
8 3  0.5675519E+05 0.0000529 0.0088672 2.3471863
Cut-Set Data:

J NUM Component List REL1 REL2 (M)

1 1 1 0 6 0 0 0 0 0 0 0.980198622 0.990279973

2 1 2 0 0 0 0 0 0 O 0 0.960789382 0.944286704

3 1 3 0 0 0 0 0 O O 0 0.941764534 0.968452990

4 1 4 0 0 0 0 0 O O 0 0.923116326 0.970502377

5 1 5 0 0 0 0 0 0 0 0 0.999600053 0.999999940

6 1 6 0 0 0 0 0 0 0 0 0.998401225 0.999680758

01




~

17 0 0 0 0 0 0 O O

1 8 0 0 0O 0 0 0 0 O

RS ELMAX (M) LMU(M)
0.8089645 0.0059611 0.0057325

0.
0.

996406436 0.999911249
993620396 0.988757312

RSLOW LEVEL

0.8691733  0.3380000



APPENDIX C : Users’ Guide for RETP2

Reliability Estimation Test Plan 2 (RETP2).
by YEE, Kah-Chee

July 91

1. Brief Description.

RETP2 is a computer program written in FORTRAN that runs on the Amdahl
mainframe at NPGS. It allows the user to simulate exponential and Weibull failure
times of component items being tested to evaluate the accuracy of a confidence limit
estimation procedure based on Type I data censoring (that is, testing items of
component i until a specified total testing time is achieved for each of them).

2. Program Input. (IN2.DATA)

The input of the program are specified to the program via an input file called
IN2.DAT. A sample input file is shown below.

This file contains the inputs required by the RETP2 model.
Update only the numerical values between dotted lines as appropriate.
Do not delete any of the comment lines. (IN2.DAT) 20 Jun 91

C Value Type Units Description Variable
Ce m o o m m e e e e e e e e e e e e e e e e e e e e e e meeeeamana-
16807.0 Real - initial random seed ISEED
8 Int - total # of components in system NCOMP
4 INT - # OF EXPONENTIAL COMPONENTS NEXP
4 INT - j## OF WEIBULL COMPONENTS NWEI
0 INT - ## OF GEOMETRIC COMPONENTS NGEO
0.01 Real - tolerance for MLE TOL
0.20 REAL - DESIRED SIGNIFICANCE LEVEL ALPHA
1000 INT - # OF REPLICATIONS DESIRED NREP
3 INT - TEST CASE NUMBER TCN
1 = all EXP
2 = all WEI

3 = EXP + WEI
4 = EXP + WEI + CYC
8 Int - number of cut sets NCS




C TEST PLAN : Testing until TT(I) (total test time) is accumulated.
C (Use REAL numbers ONLY!!!)
Cmm mm e e e e e e oo e e e e e e e e e ceaceeemeeeeeemcaaana
C Comp Comp Comp Parameters Util Test Plan Inputs
C Number Type Scale Shape Time/Cycle Accumulated
c 1 TY(I) PARM1(I) PARM2 (1) UT(1) TT(I) NC(I)
C Int Int Real Real (hrs) (cycs) (hrs)(cycs) Int
o
1.0 1.0 0.005 1.0 5.0 5400.0 20.0
2.0 1.0 0.005 1.0 5.0 5400.0 20.0
3.0 1.0 0.005 1.0 5.0 5400.0 20.0
4.0 1.0 0.005 1.0 5.0 5400.0 20.0
5.0 2.0 0.010 2.0 15.0 2700.0 20.0
6.0 2.0 0.010 2.0 15.0 2700.0 20.0
7.0 2.0 0.010 2.0 15.0 2700.0 20.0
8.0 2.0 0.010 2.0 15.0 2700.0 20.0
o S
C Note : TY(I)=1 EXPONENTIAL P(surv) = exp(-PARM2)*T)
C TY(I)=2 WEIBULL P(surv) = exp(-(PARM1*T)**PARM2)
C TY(I)=3 GEOMETRIC P(surv) = PARM1**T
o
C SYSTEM CONFIGURATION : Identification of CUT SETs
C - min groups of components that have to fail
C for the system to fail.
Clmmm e e e e e e e e e e e e e e me e e e eeeaeeeemmeeemmm—————an
C Cut Set # in Set List of Components in Cutset
C J COMP(J,1) COMP(J,2) ... up to COMP(J,l) components
Cecemcm e s cecmcccecccccaaccecaceec e e re e renescacaeaaeacr e e e ===
1 1 1 0 0 000 0 0 0 O
2 1 2 0 0 0 0 00 0 0 O
3 1 300 0 0 0 0 0 0O
4 1 4 0 0 0 0 00 0 0 O
5 1 5 0 0 0 0 00 0 0 O
6 1 6 0 0 0 0 0 0 0 0 O
7 1 7 0 0 0 00 0 0 0O
8 1 8 0 0 0 0O 0 0 O 0 O

3. Program Flow and Logic. (NAME2.DEF, PARM2.DEF and RETP2.FOR)

Input parameters are first read in by the program by calling the INPUT
subroutine. The program then evoke the SIM subroutine which generates the
random failure times and compute the key statistics required in the procedure. The
next subroutine EVAL determines the measures of accuracy for run. REPORT is
the subroutine which generates the output file for the run OUT2.DAT.

The wvariables in the program RETP2.FOR are described in the file
NAME2.DEF as listed below.
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This file contains the declaration for input and output variables
used in the the RETP2 model. (NAME2.DEF) 20 Jun 91

ISEED = initial random seed selected.

SEED = current random seed.

RS = true overall series system reliability.

ALPHA = level of significance desired.

NREP = number of replications desired for the simulation.
TPN = test plan number (1).

TCN = test case number (1, 2, 3 or 4).

NCOMP = total number of components in the system.

NEXP = number of components with EXP failure times.
NWEI = number of components with WEI failure times.
NGEQO = number of components with GEO failure times.

TOL = desired tolerance for MLE of WEI shape parameter.

Distribution: EXPonential WEIbull GEOmetric

TY(I) = type: 1 2 3
PARM(1,1): Scale(1l/hr) Scale(l/hr) Prob
PARM(2,1): - Shape -

UT(I) = utilization time (hrs) for component i (EXP and WEI).

UC(I) = utilization cycles for component i (GEO only).

NC(I) = number of test samples (sample size) for cmponent i.

NF(I) = desired number of failures in test for component 1i.

NCS = number of cut-sets for the system.

COMP(J,K) = kth parameter of cut-set j (first being the no. of
components belonging to the cut-set).

Assumed Variables.

MAXCOMP = maximum number of components allowed in the system.
MAXREP = maximum number of replications permitted.

MAXCUT = maximum number of cut-sets.

Program and Output Variables.
RS = true overall system reliability.
TT(I) = total accumulated failure time (hr) for component i
(EXP and WEI only).
TC(I) = total accumulated cycles to failure (incl. failure cycle)
for component i (GEO only).
EBETA(I) = estimate for shape parameter of component i (if Weibull).
REL1(J) = actual reliability for cut-set j.
REL2(J) = computed reliability for cut-set j for current replication.
EIM(I) = estimated component failure rate (l/hrs) for component i.
ELMAX(M) = max estimated component failure rate for rep m (l/hrs).
ER(I) = ratio of estimated failure rate to LMAX.
ET(I) = same as TT(I) except that these are for Weibull components.




NFC(M) = total number of failed test components.

IMU(M) = upper confidence bound for failure rate (l/hrs),

RSL(M) = lower confidence limit estimated for system reliability

for the mth replication.

ORSL(M) = ordered RSL(M) (ascending).

RSLOW = (1-ALPHA)xX100 percentile of set of RSL(M).

LEVEL = achieved confidence level, ie. proportion of RSL(M) that
are lesser than RS (conservative estimate).

SRR o110 J0) 0 T o200 1) o
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Together with the main program in RETP2.FOR are the other subroutines
needed in the simulation. The declaration of variables is done in the file
PARM2.DEF. Relevant descriptions are included as comment lines in the source

code to help explain the program segments. A listing of PARM2.DEF and
RETP2.FOR is given below.

C This file contains the declaration for input and output variables
C used in the the RETP2 model. (PARM2.DEF) 20 Jun 91

INTEGER MAXCOMP, MAXREP
PARAMETER( MAXCOMP = 100 , MAXREP = 1000 , MAXCUT = 20 )
REAL*8 ISEED, SEED
INTEGER NREP, TCN, NCOMP, NEXP, NWEI, NGEO, NCS,
* NC(MAXCOMP), NF(MAXCOMP), TY(MAXCOMP), NFC(MAXREP),
UC(MAXCOMP), TC(MAXCOMP), COMP(MAXCUT,MAXCOMP)
REAL*8 RS, ALPHA, UT(MAXCOMP), TT(MAXCOMP),

*

* PARM(2,MAXCOMP), ELM(MAXCOMP), ER(MAXCOMP), ET(MAXCOMP),

* IMU(MAXREP), RSL(MAXREP), ORSL(MAXREP),

* ELMAX (MAXREP), RSLOW, LEVEL, TOL, EBETA(MAXCOMP),

* REL1(MAXCUT), REL2(MAXCUT)
C

COMMON/BLOCK1/ISEED, SEED, NREP, TCN, NCOMP, NC, NF, NEXP, NWEI,
* NGEO, NCS, TY, NFC, UC, TC, COMP
COMMON/BLOCK2/RS, ALPHA, UT, TT, PARM, ELM, ER, ET, IMU,

* RSL, ORSL, ELMAX, RSLOW, LEVEL, TOL, EBETA,

* REL1, REL2
c
C-- END OF PARM2 .DEF =-vmscomomm e ei e et it
C
o
C This file contains the main program and the subroutines
C for the Reliability Estimation Test Plan 2 (RETP2) model.
C (RETP2.FOR) - runs on a IBM PC Compatible.
c
C IBM Mainframe Version.
C
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Test Plan 2 : Testing until accumulated time or cycles is achieved
----------- for component i.

by Yee Kah-Chee SMC 2802.
20 Jun 91.

PROGRAM RETP2
Include the declaration files.

INCLUDE 'NAME2 DEF’
INCLUDE ‘PARM2 DEF'

Read in input data.
CALL INPUT
Activate simulation.
CALL SIM
Process and evaluate output data.
CALL EVAL
Generate simulation report.
CALL REPORT

STOP
END

SUBROUTINE INPUT
This subroutine reads in the inputs for the RETP2 model.
Include the declaration file.

INCLUDE 'PARM2 DEF’

INTEGER I, J, K, DUM2(11)
REAL*8 DUM1(7)

Read data from 'IN2.DAT’ designated as logic unit 1.

OPEN(UNIT=1)
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READ(1,10)

10 FORMAT(1X,/////)
READ(1,*) ISEED
READ(1,*) NCOMP
READ(1,*) NEXP
READ(1,*) NWEI
READ(1,*) NGEO
READ(1,*) TOL
READ(1,*) ALPHA
READ(1,*) NREP
READ(1,*) TCN
READ(1,20)

20 FORMAT(1X,///)
READ(1,*) NCS

READ(1, 30)
30 FORMAT(1X,////////)

DO 50 K = 1, NCOMP
READ(1,*) DUM1

I = NINT(DUM1(1))
TY(I) = NINT(DUM1(2))

IF (TY(I).EQ.1) THEN
PARM(1,I) = DUM1(3)
PARM(2,1) = DUML(4)
UT(I) = DUM1(5)

TT(I) = DUM1(6)
NC(I) = NINT(DUM1(7))
EBETA(I) = O

ELSEIF (TY(I).EQ.2) THEN
PARM(1,1) = DUM1(3)
PARM(2,1) = DUML(4)
UT(1) = DUM1(5)
TT(1) = DUM1(6)

NC(I) = NINT(DUM1(7))
ELSEIF (TY(I).EQ.3) THEN
PARM(1,1) = DUML(3)
PARM(2,1) = DUM1(4&)

UC(I) = NINT(DUM1(5))
UT(I) = DUM1(5)
TT(I) = DUM1(6)
NC(I) = NINT(DUM1(7))
ENDIF
S0  CONTINUE

KeAD(1,0u)
60 FORMAT(1X,///////////)
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DO 80 I = 1, NCS
READ(1,%*) DUM2
J = DUM2(1)
COMP(J,1) = DUM2(2)
DO 70 K = 1, COMP(J,1)
COMP(J,K+1) = DUM2(K+2)
70 CONTINUE
80 CONTINUE
CLOSE(UNIT=1)
RETURN
END

SUBROUTINE SIM

This subroutine simulates NREP possible outcomes of the test plan
desired in order to obtain the raw estimates of LMU(M) and RSL(M)
for each of the replication.

Include the declaration file
and declare local variables.

INCLUDE ’'PARM2 DEF’
INTEGER 1, J, K, M, ISUM, KEY, ICOUNT
INTEGER NCYC(MAXCOMP), NSYS

REAL*8 UNI

REAL*8 SUM, PROD,

* FT(MAXCOMP,200), OFT(MAXCOMP,200),
* DFT(200), DOFT(200)

LOGICAL FLAG
SEED = ISEED

Compute overall true system reliability RS.

RS = 1.0
DO 30 J = 1, NGCS
PROD = 1.0
DO 20 I = 1, COMP(J,1)
K = COMP(J,I+1)
PROD = PROD*( 1 - SURV(TY(K),PARM(1,K),PARM(2,K),UT(K)) )
20 CONTINUE
REL1(J) = 1.0 - PROD
RS = RS * REL1(J)
30 CONTINUE

Start of Simulation.
(Initialize replication counter M).
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M=1
DO WHILE (M.LE.NREP)

C
C Test Plan : Sample and determine unknown NF(I)
C -----en-- (with known NC(I), Weibull case) until TT(I) is reached.
C
C Generate NC(I) failure times, put them in ascending order
C with the smallest failure time on the top of the list.
C
DO 60 I = 1, NCOMP
C
C Exponential components. Test each component until it fails, check
C to see if TT(I) is exceeded, if not, carry on testing.
C
IF(TY(I).EQ.1) THEN
SUM = 0.0
L=1
DO WHILE (SUM.LE.TT(I))
CALL LRNDPC(SEED,UNI,1)
FT(I,L) = -LOG(UNI)/PARM(1,I)
SUM = SUM + FT(I,L)
L-L+1
ENDDO
NF(I) = L - 2
C
C Weibull components. Generate NC(I) failure times, put them in
C an ascending order with the smallest failure time on top and
C determine NF(I).
C

ELSEIF(TY(I).EQ.2) THEN
DO 40 K = 1, NC(I)
CALL LRNDPC(SEED,UNI,1)
FT(I,K) = (1.0/PARM(1,I))*(-LOG(UNI))**(1.0/PARM(2,1))
DFT(K) = FT(I,K)
40 CONTINUE
CALL BUBBLE(NC(I),DFT,DOFT)
DO 42 K = 1, NC(I)
OFT(I,K) = DOFT(K)
42 CONTINUE
SUM = 0.0
NF(I) = 0
DO 45 K = 1, NC(I)
IF (OFT(I,K).LT.TT(I)) THEN
NF(I) = NF(I) + 1

ENDIF
45 CONTINUE
C
C GEOMETRIC COMPONENTS. DETERMINE NF(I).
C

ELSEIF(TY(I).EQ.3) THEN
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NF(I) = O
DO 50 K = 1, TT(I)
CALL LRNDPC(SEED,UNI,1)
IF (UNI.GT.PARM(1,I)) THEN
NF(I) = NF(I) + 1
ENDIF
50 CONTINUE

ENDIF
60 CONTINUE

Determine total number of failed test components as well as
checking for zero component failure or just failurcs from a
SINGLE component (FLAG will be set to .TRUE. if so).

ISUM = 0
ICOUNT = 0
DO 70 I = 1, NCOMP
IF (NF(I).GT.0) THEN
ICOUNT = ICOUNT + 1
ENDIF
ISUM = ISUM + NF(I)
70  CONTINUE

NFC(M) = ISUM
IF (ICOUNT.LE.1) THEN
FLAG = .TRUE.
ELSE
FLAG = .FALSE.
ENDIF

Case A : More than ONE component type experienced failures
------ in the test.

IF (.NOT.FLAG) THEN
Estimate the failure rate of each component.
DO 90 I = 1, NCOMP
Exponential components.
IF (TY(1).EQ.1) THEN
ET(I) = TT(I)
ELM(I) = FLOAT(NF(I))/TT(I)

Weibull components.

ELSEIF (TY(I).EQ.2) THEN
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DO 75 K = 1, NC(I)
DOFT(K) = OFT(I,K)
75 CONTINUE
CALL MLESHAPE(DOFT,NC(I),IMAX(1,NF(I)),TOL,1.D0,EBETA(I))
EBETA(I) = BN(NC(I))*EBETA(I)
SUM = 0.0
DO 80 K = 1, NF(I)
SUM = SUM + OFT(I,K)**EBETA(I)
80 CONTINUE
ET(I) = FLOAT(NC(I)-NF(I))*TT(I)**EBETA(I) + SUM
ELM(I) = FLOAT(NF(I))/ET(I)

Geometric components.

ELSEIF (TY(I).EQ.3) THEN
ET(I) = TT(I)
ELM(I) = FLOAT(NF(I1))/TT(I)

ENDIF
90 CONTINUE

Determine the maximum failure rate estimate
and identify that component.

ELMAX(M) = 0.0
KEY = 0
DO 100 I = 1, NCOMP
IF (ELM(I).GT.ELMAX(M)) THEN
ELMAX(M) = ELM(I)
KEY = I
ENDIF
100 CONTINUE

Compute the ratios of the failure rate estimates to their maximum.
DO 110 T = 1, NCOMP
ER(I) = ELM(I) / ELMAX(M)
110 CONTINUE
Determination of LMU(M)
SUM = 0.0
DO 120 T = 1, NCOMP
SUM = SUM + (ER(I)*ET(I))
120 CONTINUE
IMU(M) = CHISQD(1-ALPHA,NINT(1.3%2*(1+NFC(M))))/(2*SUM)

Compute estimate of overall reliability RSL(M) for the system.
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130

140

RSL(M) = 1.0
DO 140 J = 1, NCS
PROD = 1.0
DO 130 I = 1, COMP(J,1)
K = COMP(J,I+l)
IF (TY(K).EQ.1) THEN
PROD = PROD*(1 - SURV(TY(K),LMU(M)*ER(K),EBETA(K),UT(K)))
ELSEIF (TY(K).EQ.2) THEN
PROD = PROD*(1 - SURV(TY(K), (LMU(M)*ER(K))**(1./EBETA(K)),
EBETA(K) ,UT(K)))
ELSEIF (TY(K).EQ.3) THEN
PROD = PROD*(1l - SURV(TY(K),1.DO-LMU(M)*ER(K),0.DO,UT(K)))
ENDIF
CONTINUE
REL2(J) = 1.0 - PROD
RSL(M) = RSL(M) * REL2(J)
CONTINUE

ENDIF

Case B : Where there are at most ONE component which experienced

-- failures during the test.

IF (FLAG) THEN

Determine number of complete systems (NSYS) implied by the test
based on cut-set information after first determining the number
of mission cycles tested for each component (to the nearest
integer) (NCYC(I)).

150

160

ISUM = 0

DO 150 I = 1, NCOMP
NCYC(I) = INT(TT(1)/UT(I1))
ISUM = ISUM + NCYC(I)
ELM(I) = O
ER(I) = O
EBETA(I) ~ 1.0

CONTINUE

ELMAX(M) = 0

IMU(M) = O

NSYS = ISUM
ISUM = O
DO 170 J = 1, NCS
ISUM = O
DO 160 I = 1, COMP(J,1)
ISUM = ISUM + NCYC(COMP(J,I+1))
CONTINUE
ISUM = ISUM / COMP(J,1)

73




NSYS = IMIN(NSYS,ISUM)
170 CONTINUE

C
C For zero failures in the test.
C
IF (ICOUNT.EQ.0) THEN
RSL(M) = ALPHA**(1.0/FLOAT(NSYS))
C
C For failures experienced by a particular component type.
C
ELSE
CALL GETP(NSYS,ALPHA,RSL(M))
ENDIF
C
ENDIF
C
C Increment replication counter.
C
M=M+1
C
ENDDO
END
G e e m e e e e m e e e mmmmmae e e mm e e e e e eeme e e ee e —mmm—————-
C 4 Subroutine (EVAL).
o
SUBROUTINE EVAL
C
C This subroutine calls BUBBLE to sort the array RSL(NREP) in
C ascending order to get an ordered array ORSL(NREP). It also
C determine the estimate for RSLOW at the specified significance
C level ALPHA and the value of LEVEL in which ORSL(LEVEL) is closest
C to the true reliability RS.
C
C Include the declaration files
C and declare the local variables.
C
INCLUDE '‘'PaRM2 DEF’
INTEGER INDEX
REAL*8 DIFF
C
C Order the array RSL(NREP) in ascending order.
C
DO 10 M = 1, NREP
ORSL(M) = RSL(M)
10 CONTINUE
C
C Bubble Sort. Sink the larger of the pair.
C
CALL BUBBLE(NREP,RSL,ORSL)
C
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Determine the (1-ALPHA)% lower confidence bound for the system
reliability.

RSLOW = ORSL(NINT(NREP*(1-ALPHA)))

Finding the % confidence level for the true reliability RS.
(ie. the proportion of RSL(M) lesser than RS)

DTFF = 1.0
INDEX = O
DO 206 M = 1, NREP
IF (ABS(ORSL(M)-RS).LT.DIFF) THEN
DIFF = ABS(ORSL(M)-RS)

INDEX = M
ENDIF
200 CONTINUE
LEVEL = FLOAT(INDEX)/NREP
Record evaluated parameters in RAW2.DAT (unit 2).
OPEN(UNIT=2)
WRITE(2,300)
300 FORMAT(1X, ' M MU (M) ELMAX (M) RSL(M) ',
* ! ORSL(M) NFC(M) ')

DO 500 M = 1, NREP
WKITE(2,400) M,IMU(M),ELMAX (M) ,RSL(M),ORSL(M) ,NFC(M)
400 FORMAT(1X,16,2F12.7,2F12.7,110)
500 CONTINUE
CLOSE(UNIT=2)

RETURN
END

SUBROUTINE REPORT

This subroutine record the simulation results into the 'OUT2.DAT'
file as logic unit 3.

Include the declaration files
and declare local variables.

INCLUDE 'PARM2 DEF'
INTEGER I. J, K, DUM(10)

Write to output file 'OUT2.DAT’ designated as logic unit 3.

OPEN(UNIT=3)




200

300

400

500

10
20
25
26
30
40
50
60

70
80
90

100
110
120

130
140

150

WRITE(3,10)

WRITE(3,20) NREP

WRITE(3,25)

WRITE(3,26)

WRITE(3,30)

WRITE(3,40)

WRITE(3,50) ISEED,NCOMP,ALPHA,TOL,NCS,TCN

WRITE(3,60)
DO 200 I = 1, NCOMP

WRITE(3,70) I,TY(I),PARM(1,I),PARM(2,1),UT(I),TT(I),NC(I),NF(I)
CONTINUE
WRITE(3,80)
WRITE(3,90)
DO 300 I = 1, NCOMP

WRITE(3,100) I,NF(I),ET(I),ELM(I),ER(1),EBETA(I)
CONTINUE
WRITE(3,110)
WRITE(3,120)
DO 500 J = 1, NCS

DO 400 K = 1, 10

DUM(K) = COMP(J,K)

CONTINUE

WRITE(3,130) J,DUM,REL1(J),REL2(J)
CONTINUE
WRITE(3,140)
WRITE(3,150) RS,ELMAX(NREP),LMU(NREP),RSLOW,LEVEL

FORMAT (1X, 'OUT2.DAT : Output File of the RETP2 simulation’)
FORMAT (1X, ' after ',15,' replications’,/)
FORMAT (1X, 'COMMENTS : 8 COMPONENT IN SERIES )
FORMAT(1X, ' DF = NINT (1.3 * 2 * (1 + NFC)) D
FORMAT(1X, ’' Input Parameters:’, /)

FORMAT(1X, * ISEED NCOMP ALPHA TOL NCS TCN', /)
FORMAT(1X,F10.1,18,F8.4,F8.5,216,/)

FORMAT(1X,' I TY(I) PARM1(I) VARM2(I) UT(1) TT(I) NC(I)',
* " NF(I)',/)
FORMAT (1X,13,16,2F9.5,2F9.2,216)

FORMAT(1X, /, ‘Output Parameters for the LAST Replication:’',/)

FORMAT(1X,’ I NF(I) ET(I) EIM(I) ER(I) ',
* ! EBETA(I)',/)
FORMAT(1X,13,16,E16.7,2F14.7,F14.7)

*

*

FORMAT(1X,/,'Cut-Set Data:’,/)
FORMAT(1X,' J NUM Component List !

! REL1 REL2(M)',/)
FORMAT(1X,13,15,912,2F12.9)
FORMAT(1X,/.' RS EIMAX (M) LMU(M) ',
! RSLOW LEVEL', /)

FORMAT (1X,5F12.7,/)
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CLOSE(UNIT=3)

RETURN
END

This portion of the file contains functions and subroutines
used in the RETP2 model.
- 20 Jun 91
- by Yee Kah-Chee SMC 2802
A. Random Number Generating Subroutine (LRNDPC).
(Courtesy of Mr. David Lim Hung-Heng)
SUBROUTINE LRNDPC (DSEED,U,N)
INTEGER N, I
REAL*8 U(N)
REAL*8 D31M1, DSEED, D31
D31M1=2%%31 - 1
D31 =2%%3]

DATA D31M1/2147483647.D0/

DATA D31 /2147483648.D0/

DO 5 I=1,N
DSEED = DMOD (950706376 .DU*DSEED,D31M1)
DSEED = DMOD(16807.DO*DSEED,D31M1)

5 U(1) = DSEED / D31
RETURN
END

FUNCTION SURV(TYPE, PAR1,PAR2,UTIL)

This function returns the survival probability of the component of
different types (TYPE) with scale (PAR1l) and shape (PAR2) parameters
given the specified utilization times or cycles (UTIL).

INTEGER TYPE, N
REAL*8 PAR1, PARZ2, UTIL

IF (TYPE.EQ.1) THEN
SURV = EXP(-(PAR1*UTIL))
ELSEIF (TYPE.EQ.2) THEN
SURV = EXP(- ((PARI*UTIL)**PAR2))
ELSE
N = NINT(UTIL)
SURV = PAR1**N
ENDIF

END
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C .......................................................................
SUBROUTINE BUBBLE(N,LIST,OLIST)
C
C This subroutine performs a bubble sort in increasing order (ie. sink
C the greater numeral) for the first N terms in an array LIST and
C returns the result in OLIST.
C
LOGICAL DONE
INTEGER N, K, PAIR
REAL*8 LIST(*), OLIST(*)
C
C Sink the larger of the pair.
C

DO 50K =1, N
OLIST(K) = LIST(K)
50 CONTINUE
PAIR = N - 1
DONE = .FALSE.
DO WHILE (.NOT.DONE)
DONE = .TRUE.
DO 100 K = 1, PAIR
IF (OLIST(K).GT.OLIST(K+1l)) THEN
TEMP = OLIST(K)
OLIST(K) = OLIST(K+1)
OLIST(K+1) =~ TEMP
DONE = .FALSE.
ENDIF
100 CONTINUE
PAIR = PAIR - 1

ENDDO
END
Cm e m o e e e e e e et e e e e—aaaa- e e e e e e mmmmmemeee—mmm— ;e ————a
C D. Unbiasing Factor for Biased MLE for Weibull Shape Parameter.
o
FUNCTION BN(I)
C .
C This functon returns the value of the unbiased factor for the biased
C maximum likelihood estimate of the shape parameter of a Weibull
C distribution with a sample size of N.
c

INTEGER 1

IF (I.LE.5) THEN
BN = (I*0.699)/(5.0)

ELSEIF (I.EQ.6) THEN
BN = 0.752

ELSEIF (I.EQ.7) THEN
BN =« 0.786

ELSEIF (I.EQ.8) THEN




BN = 0.82
ELSEIF (I.EQ.9) THEN

BN = 0.8395
ELSEIF (I.EQ.10) THEN

BN = 0.859
ELSEIF (1.EQ.11) THEN

BN = 0.871
ELSEIF (I.EQ.12) THEN

BN = 0.883
ELSEIF (I.EQ.13) THEN

BN = 0.892
ELSEIF (I.EQ.14) THEN

BN = 0.901
ELSEIF (I.EQ.15) THEN

BN = 0.9075
ELSEIF (I.EQ.16) THEN

BN = 0.914
ELSEIF (1.EQ.17) THEN

BN = 0.9185
ELSEIF (I.EQ.18) THEN

BN = 0.923
ELSEIF (I.EQ.19) THEN

BN = 0.927
ELSEIF (1.EQ.20) THEN

BN = 0.931
ELSEIF (I.LE.25) THEN

BN = 0.931+(I1-20)*0.014/5.0
ELSEIF (I.LE.30) THEN

BN = 0.945+(1-25)*0.01/5.0
ELSEIF (I.LE.40) THEN

BN = 0.955+(1-30)*0.011/10.0
ELSEIF (I1I.LE.60) THEN

BN = 0.966+(1-40)*0.012/20.0
ELSEIF (I.LE.80) THEN

BN = 0.978+(1-60)*0.006/20.0
ELSEIF (I.LE.100) THEN

BN = 0.984+(1-80)*0.003/20.0
ELSEIF (I.LE.120) THEN

BN = 0.987+(1-100)*0.003/20.0

ELSE
BN « 1.0
ENDIF
RETURN
END
[ O I T T e T T e e T
C E Biased MLE of Weibull Shape Parameter.
O T T TR T I T I
SUBROUTINE MLESHAPE(T,N,R,DEL,B,BNEW)
C

C This subroutine returns a biased estimator (BNEW) for a Weibull
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shape parameter using the Newton-Raphson's Method of Successive
Approximation. The data parameters consist of an ascending ordered
list of failure times (T), sample size (N), number of failed samples
(R), tolerance for convergence (DEL) and an initial estimate of the
shape parameter (B).

LOGICAL DONE
INTEGER N, R, I
REAL*8 GFUNCT, GPRIME, B, BOLD, BNEW, T(*), DEL,
* TERM1, TERM2, TERM3, SUM1, SUM2, SUM3, SUM4, STEP

BNEW = B
DONE = .FALSE.

DO WHILE (.NOT.DONE)

DONE = .TRUE.

TERM1 = FLOAT(N-R)*(T(R)**BNEW)

TERM2 = FLOAT(N-R)*(T(R)**BNEW)*LOG(T(R))

TERM3 = FLOAT(N-R)*(T(R)**BNEW)*LOG(T(R))*LOG(T(R))
SUM1 = 0.0

SUM2 = 0.0

SUM3 = 0.0

SUM4 = 0.0

DO S0 I =1, R

SUM1 = SUM1 + T(I)**BNEW

SUMZ2 = SUM2 + (T(I)**BNEW)*LOG(T(I))

SUM3 = SUM3 + (T(I)**BNEW)*LOG(T(I))*LOG(T(I1))
SUM4 = SUM4 + LOG(T(I))

50 CONTINUE

GFUNCT = (SUM2+TERM2)/(SUM1+TERM1) - (1.0/BNEW)

* - (1.0/FLOAT(R))*SUM4

GPRIME = (1.0/(SUMI+TERM1)*%2)*( (SUM1+TERM1)%*(SUM3+TERM3)
* - (SUM2+TERM2)*%2 )
* + (1.0/BNEW**2)

PRINT 60, GFUNCT,GPRIME, BNEW
60 FORMAT(1X, 'GFUNCT =‘',F8.3,' GPRIME =',F8.3,’ BNEW =’ ,F8.3)

Contreol magnitude of the marching step towards convergence
as no more than 0.1.

IF ((GFUNCT.LT.O0) .AND. (GPRIME.GT.Q)) THEN
STEP = VMAX(-.1DO, (GFUNCT/GPRIME))

ELSEIF ((GFUNCT.GT.O0) .AND. (GPRIME.LT.O0)) THEN
STEP = VMAX(-.1DO, (GFUNCT/GPRIME))

ELSE
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STEP = VMIN(.1DO, (GFUNCT/GPRIME))
ENDIF

BOLD = BNEW
BNEW = BNEW - STEP

Check for convergence of the MLE for the shape parameter B.

IF (ABS(BOLD-BNEW).GT.DEL) THEN
DONE = .FALSE.
ENDIF

Avoid overflow error due to large MLE value caused by small
GPRIME (slope) as GFUNCT approaches to near zero.
STOP WHEN MAGNITUDE OF BNEW EXCEEDS 7.

IF (BNEW.GT.7.0) THEN
BNEW = BOLD
DONE = .TRUE.

ENDIF

ENDDO
RETURN
END

FUNCTION CHISQD(P,N)

Modified version of Algorithm 451 from Comunications of the ACM
Aug 1977 Vol.1l6 No.8

This function evaluates the quantile at the probability level P
(left tail area) for the Chi-square distribution with
N degrees of freedom.

REAL*8 P

REAL X

INTEGER IF

DIMENSION C(21), A(19)

DATA C/ 1.565326E-3,
1.060438E-3,
-6.950356E-13,
-1.323293E-2,
2.277679E-2,
-8.986007E-3,
-1.513904E-2,
2.530010E-3,
-1.450117E-3,
5.169654E-3,

* Ok % ok Ak ok kK ®
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-1.153761E-2,
1.128186E-2,
2.607083E-2,
-0.2237368,
9.780499E-5,
.426812E-4,
3.125580E-3,
-8.553069E-3,
1.348028E-4,
0.4713941,
1.0000886 /
DATA A/ 1.264616E-2,
-1.425296E-2,
1.400483E-2,
-5.886090E-3,
-1.091214E-2,
-2.304527E-2,
3.135411E-3,
-2.728484LE-4,
-9.699681E-3,
1.316872E-2,
2.618914E-2,
-0.2222222,
5.406674E-5,
3.483789E-5,
-7.274761E-4,
.292181E-3,
.729713E-3,
4714045,
-/
IF (N-2) 10, 20, 30
10 CALL XFROMP(.5*(1.-P),X,IF)
CHISQD = X
CHISQD = CHISQD*CHISQD
RETURN
20 CHISQD = -2.*LOG(1l.-P)
RETURN
30 F =N
FL = 1./F
CALL XFROMP(P,X,IF)
T =X
F2 = SQRT(F1)*T
IF (N.GE.(2+INT(4.*ABS(T)))) GO TO 40
CHISQD = (((((((C(1)*F2+C(2))*F2+C(3))*F2+C(4))*F2
+C(5))*F2+C(6))*F2+C (7)) *F1+((((((C(8)+C(9)*F2)*F2
+C(10) )*F24C(11))*F2+C(12))*F2+C(13) )*F2+C(14)))*F1+
(((((C(15)*F2+4C(16))*F2+C(17))*F2+4C(18))*F2
+C(19))*F2+4C(20))*F2+C(21)
GO TO 50
40 CHISQD=(((A(1)+A(2)*F2)*F1+(((A(3)+A(L)*F2)*F2

* ok Kk H N K % % ¥ %
L]
o ]

% % % % % % X % % % % % ¥ % % * ¥ *
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+A(5) )*F2+A(6)))*F1+(((((A(7)+A(8)*F2)*F2+A(9))*F2
+A(10))*F2+A(11))*F2+A(12) ) Y*F1+(((((A(13)*F2
+A(146))*F2+A(15) )*F2+A(16) ) *F2+A(17))*F2*F2
+A(18))*F2+A(19)

50 CHISQD = CHISQD*CHISQD*CHISQD*F

RETURN

END

* X% F %

SUBROUTINE XFROMP(P,X, IFAULT)
Algorithm AS 24 J.R.STAT.SOC. C. (1969) Vol.18. No.3.

This subroutine computes the standard normal deviate X for
the specified left tail area P.

REAL*8 P

DIMENSION A(5)

DIMENSION CONNOR (17), HSTNGS(6)
DATA CONNOR/ 8.0327350124E-17,
L48326L6LLE-15,
.4668270103E-14,
.9554295164E-13,
.9477940136E-12,
.3507027951E-11,
.0892221037E-9,
.3122532964E-8,
.4503852223E-7,
.4589169001E-6,
.3227513228E-5,
.0683760684E-4,
.5757575758E-4,
.6296296296E-3,
.3809523810E-2,
1,

.33333333333 /

% % %k % % % % % X % % X X X X %
QONENFHPFHPFERRFHEO®®UVWN P

DATA RTHFPI / 1.2533141373 /

DATA RRT2PI / 0.3989422804 /

—

DATA TERMIN / 1.0E-11 /

DATA HSTNGS / 2.515517,
0.802853,
0.010328,
1.432788,
0.189269,
0.001308 /

* * k Ok
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IFAULT = 1
IF ((P.LE.0.0).OR.(P.GE.1.0)) GO TO 100
IFAULT = O

Get first approximation XO to deviate by Hastings’ formula

B=P
IF(B.GT.0.5) B=1.0 - B

F = - LOG(B)

E = SQRT(F+F)

XO = -E + ((HSTNGS(3)*E+HSTNGS(2))*E+HSTNGS(1))/
* (( (HSTNGS (6 )*E+HSTNGS (5) ) *E+HSTNGS (4) )*E+1.0)
IF (XO0.LT.0.0) GO TO 1

X0 = 0.0

PO = 0.5

X1 =~ -RTHFPI

GO TO 7

Find the area PO corresponding to XO

1 Y = XO**2
IF (X0.LE.-1.9) GO TO 3
Y = -0.5%Y

(1) series approximation

PO = CONNOR(1)
DO 2 L=2,17
2 PO = PO*Y + CONNOR(L)
PO = (PO*Y+1.0)*XO
X1 = - (PO+RTHFPI)*EXP(-Y)
PO = PO*RRT2PI + 0.5
GO TO 7

(2) continued fraction approximation

32 =1.0/Y
A(2) = 1.0
A(3) - 1.0
A(L) =2 + 1.0
A(5) = 1.0
W=2.0

4 DO 6 L=1,3,2
DO 5 J=1,2
K=L+1J
KA =7 - K
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5 A(K) = A(RA) + A(K)*WxZ

6 W=W+1.0
APPRXU = A(2)/A(3)
APPRXL = A(5)/A(4)
C = APPRXU - APPRXL
IF (C.GE.TERMIN) GO TO 4
X1 = APPRXL/XO
PO = -X1*RRT2PI*EXP(-0.5%*Y)
C
C Get accurate value of deviate by Taylor Series
C (X1, X2, X3 are derivatives for the Taylor Series
C
7 D = F + LOG(PO)
X2 = XO*X1*X1 -X1
X3 = X1%*3 + 2 O*XO*X1*X2 -X2
X = ((X3*D/3.0+X2)*D/2.0+X1)*D + XO
IF (P.LE.O0.5) GO TO 100
X = -X
100 RETURN
END

FUNCTION VMAX(X,Y)

REAL*8 X, Y

IF (X.GT.Y) THEN
VMAX = X

ELSE
VMAX = Y

ENDIF

RETURN

END

FUNCTION IMAX(X.Y)

INTEGER X, Y

IF (X.GT.Y) THEN
IMAX = X

ELSE
IMAX = Y

ENDIF

RETURN

END

FUNCTION VMIN(X,Y)

REAL*8 X, Y

IF (X.LT.Y) THEN
VMIN = X

ELSE




VMIN = Y
ENDIF
RETURN
END

FUNCTION IMIN(I,J)

INTEGER I, J

IF (I.LT.J) THEN
IMIN = I

ELSE
IMIN = J

ENDIF

RETURN

END

SUBROUTINE GETP(N,ALPHA,NEWP)

INTEGER N

REAL*8 ALPHA, OLDP, NEWP, TOL

LOGICAL DONE

OLDP = ALPHA**(1.0/FLOAT(N))

NEWP = 1.0

TOL = 0.0001

DONE = _FALSE.

DO WHILE (.NOT.DONE)
GFUNCT = N*OLDP**(N-1) - (N-1)*OLDP**N - ALPHA
GPRIME = N*(N-1)*OLDP#*(N-2) - N*(N-1)*OQLDP**(N-1)
NEWP = OLDP - (GFUNCT/GPRIME)
IF ((ABS(NEWP-OLDP).LE.TOL) .OR. (ABS(GFUNCT).LE.TOL)) THEN

DONE = .TRUE.

ENDIF
OLDP = NEWP

END DO

RETURN

END

4. Program Output. (OUT2.DAT)

The result for the simulation run based on the input parameters specified in
IN2.DAT are computed and written to the file OUT2.DAT. A sample of this file is
as follows.

OUT2.DAT : Output File of the RETP2 simulation
after 1000 replications

COMMENTS : 8 COMPONENT IN SERIES
DF = NINT (1.3 * 2 * (1 + NFC))
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Input Parame

ISEED

16807.0

I TY(I) PARMI(I)

W~ WV EWN
N RPN =
[eNeoNoNoNoNoNoNe]

I NF(I)

36
23
28
25
20
20
20
20

W SO PN

Cut-Set Data:

[
2
=

0~ NV W
P e
[« BRI« NV R S U S

RS

0.8269590

ters:
NCOMP  ALPHA
8 0.2000
PARM2 (1)
.00500 1.00000
.00500 1.00000
.00500 1.00000
.00500 1.00000
.01000 2.00000
.01000 2.00000
.01000 2.00000
.01000 2.00000

ET(I)

.5400000E+04
.5400000E+04
.5400000E+04
. 5400000E+04
.2378985E+05
.4825114E+06
.2539978E+05
.3708000E+07

SO COQOQOOO

Component List

OO O0OO0OOCOOOO
OO OOCOOOO0
QOO0 OO OO
[eNeNeNoNeNeNe o]
OO O OOQOOO

EIMAX (M)

0.0066667

Output Parameters for the LAST Replication:

TOL  NCS TCN
0.01000 8 3
UT(I) TT(I) NC(I) NF(I)
5.00 5400.00 20 36
5.00 5400.00 20 23
5.00 5400.00 20 28
5.00 5400.00 20 25
15.00 2700.00 20 20
15.00 2700.00 20 20
15.00 2700.00 20 20
15.00 2700.00 20 20
EIM(I) ER(I) EBETA(I)
0.0066667 1.06000000 0.0000000
0.0042593 0.6388889 0.0000000
0.0051852 0.7777778 0.0000000
0.0046296 0.6944444 0.0000000
0.0008407 0.1261042 1.5441284
0.0000414 0.0062175 2.1482593
0.0007874 0.1181112 1.5843514
0.0000054 0.0008091 2.5186896
REL1 RELZ (M)
0 0 0 0.975309908 0.955163479
O 0 0 0.975309908 0.971117675
0 0 0 0.975309908 0.964950144
0 0 0 0.975309908 0.968645990
0 0 0 0.977751195 0.927053154
0 0 0 0.977751195 0.981007099
6 0 0 0.977751195 0.923940539
0 0 0 0.977751195 0.993218899
LMU (M) RSLOW LEVEL
0.0091745 0.7754698 0.9940000
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APPENDIX D : Evaluation of Subroutines and Functions

RANDOM NUMBER GENERATOR
(LRNDPC)
Evaluation

One thousand uniform random real numbers between 0 and 1 are generated
using the random number generating routine LRNDPC. From these uniformly
distributed numbers, 1000 exponential (with scale parameter 1) numbers and 1000
Weibull (with scale parameter 1 and shape parameter 2) numbers were generated.

Uniform Random Variate

Piot of U(N+1) vs U(N)
for 1000 Uniform RVs from LRNDPC

B S

08 -

o8- . . - B
07 -
LY

05 -

UN+1)

04 -
03

02 .

0 a1 02 a3 G4 05 08 07 O8 Q9 1
UN)
Figure 1 : Uniform RVs generated by LRNDPC

Figure 1 above shows a plot of 1000 uniforrm real numbers against their
predecessors. The umformity of the distribution of points over the state space
confirms LRNDPC's adequacy in generating uniforr random numbers.
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Exponential and Weibull real numbers were generated using these 1000
Uniform(0,1) random numbers. The cumulative histograms of these resultant
random variates were compared with their respective theoretical cumulative
distribution functions (cdfs).

Exponential Random Variate

Distribution Fitting
for 1000 Exp(1) RVs by LARNDPC
1 T T LR T T T T T | S
"~ =TT 7
7‘
A7)
% ]
os 7 4
5 /
S a7l 7 l ﬂ
§ oo [ _
o os| i
£
S oal 4
g
(&) 03+ —
02| N
01k A
ok N
4 L 1 1 . —_—L ay — Jl i 1.

© 1 2 s 4 & 6 7T & 8 10
Value of Random Variable

Figure 2 : Exponential RVs generated by LRNDPC

Figure 2 shows the close distribution fit between the theoretical cdf (line) and
the cumulative distribution of exponential RV generated using LRNDPC.

F@)
A 4

exp(~At)
. % In{F(t)}
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Weibull Random Variate

Distribution Fitting
for 1000 Wal(1,2) RVs by LRND®C

(le. Scale = 1, Shape = 2)

1 T T A 1 T T T 7
’7‘7‘7"
(1] r— Z -1
c3 1
-

Cumulative Proportion
£ =
|
1 1

I L L L L 1 1
[} os 1 18 2 28 3 35 4

Value of Random Variable
Figure 3 : Weibull RVs generated by LRNDPC

Figure 3 shows the close distribution fit between the theoretical cdf (line) and
the cumulative distribution of Weibull RV generated using LRNDPC.

F(t) = expl-(A)®

t

|
--X[ln{F(t))] B
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Plot of Unbiasing Factor B(N) vs N
for Weibull Shape Parameter Estimation

N = Test Sample Size
B(N) = Unbiasing Factor for MLE

Plotof BNvs N
(Weibull Shape Parameter Estimation)
H T Y T T T
1 T ]
0.95 ]— —
Z ae !- _
.
3 /
B oms! ! -
= !
Lt
'2 08 - .
2
[
2 078 r» -
o7k -
|
O“ i: L. 1 1 i i - 1 ﬁ
° 2 © © © 100 120
Sample Size N

Figure 1 : B(N) vs N

The function BN(N) returns the linear-interpolated values of the unbiasing
factor for the raw MLE B for both RETP1 and RETP2.

Evaluation of Subroutine CHISQD and XFROMP
The X statistics for 1 to 499 degrees of freedom for @ values of 0.1 and 0.2 are

generated using the routines CHISQD and XFROMP. These outputs matched those
tabulated in the mathematical tables of any general textbook on statistics.
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30
31
a2
33
34

a5
36
37
38
39

40
41
42
43
44

45
4B
47
48
49

118.

140.
151.
161.

172.
183.
184.
204,
215.

226.
236.
247,
257,
268.

279.
288.
300.
310.
321.

331.
342.
352.
363.
373.

384.
394,
.26
415.
426.

405

436.
.10
457.
467 .
4i8.

aa7

488.
499,
509.
520.
530.

78
kB3
82
32
82

31
79

73
18

65

54
28
42

85
27
69
11
52

280.
.67
301.
311.
322.

332,
343.
353.
364.
374,

385.
395.
406.
416.
427.

437.
448,
458.
469 .
A79.

488.
500.
510.
521.
531.

.09

.33
.94
.53

11

23
78
31

84
36

37
87

35
84
31
78
24

228.

249,
260.
270.

281.
291.
302.
312,
323.

333.
344,
354,
365.
37s.

386.
396.
407.
417.
428,

438.
449,
459.
470.
480.

490.
501.
511.
522.
532.

16
73

83
37

228.

271.

282.
292.
303.
313.
324.

334.
345.
355.
366.
376.

387.
397.
408,
418.
429.

439,
450.
A60.
471.
481.

481.
502.
512.
523.
533.

231.

252.
263.
273.

284.
294.
305.
315.
326.

337.
347.
358,
368.
37e.

389.
400.
410.
420.
431.

441,
452.
462.
473.
483,

494,
504,
514,
525.
535.

232.
.03
.64
.24
274,

285,
295.
306.
317.
327.

338.
348.
359.
369.
380.

390.
.07
411,
422,
432.

401

442,
453.
463,
474,
484,

495,
505.
515.
526.
536.

92

40

82

10
62
12
62
11

60

54
01
47

92
37
81
25
68

10
53
95
36
77

126.

169.

180.
180.
201.
212.
222.

233.
244,
254,
265,
275.

286.
297.
307.
318.
328.

339.
349.
360.
370.
381.

391.
402.
412,
423.
433.

443.
454
464,
475.
485.

496,
506.
516.
527.
537.

15
67
17
67
16

127.

170.

181.
191.
202.
213.
223.

234.
245,
255.
266.
276.

287.
298.
.61
319.
329.

308

340

392,
403.
413.
.10
434,

424

445
455

486

497,
507.
518.
528.
538.

53
15
76
35
84

51
07

68

.20
350.
361.
371.
382.

72
22
72
21

69
17
64

56

.01
.46
465.
476.
.76

80
33

19

03

&4
85

128.

148.
160.
171.

182.
182,
203,
214,
224,

235.
246.
256.
267.
277.

288.
299.

309

341.
351.
362.
372.
383.

393.
404,
414,
425,
435,

446,
456,
466 .
477,
487.

498,
508.
518,
528.
539.

59
21

41
99

56
12

.67
320.
330.

21
74




216.

268.

310.

320.

341,
351.
361.

372.
382.
392,
402,
413.

423,
433.
444,
454
464,

475.
485.
425,
505.
516.

102.

112.
123.
133.
144,
154,

165.
175.
186.
196.
207.

217.
228.
238.
248,
259.

269.
280.
290.
300.
311.

321.
331.
342.
352.
362.

373.
383.
393.
404 .
414,

424,
434,
445,
455.
465,

476.
486.
496.
506.
517.

218.

270.
281.
291.
301.
312.

322.
332.
343.
353.
363.

374,
384.
394,
405.
415.

425.
435.
446,
456.
466.

A77.
487,
497,
507.
518.

167.

209.

219,
230.
240.
250.
261.

271.
282.
292.
302.
313.

323.
333.
Ibb,
354.
364.

375.
385.
395.
406.
416.

426.
436,
447,
457,
467,

478.
488.
4 498,
508.
519.

115.

168,

220.

262.

272.
283,
293.
303.
314.

324.
334,
345,
35s.
365.

376.
386.
396.
407.
417.

427.
438.
448
458.
468.

479,
489.
499,
509.
520.

116.

158.

169,
180.
190,
200.
211.

221.
232,
242,
253.
263.

273.
284,
284.
304,
315.

325.
335.
346.
356.
366.

377.
387.
397.
408.
418.

428.
439.
449,
459,
469.

480.
490.
500.
511.
521.
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171.

213.

223.
234.
264,
255.
265.

275.
286.
286.
306.
317.

327.
337.
348,
358.
368.

378.
388.
399.
410.
420.

430.
441,
451.
461.
471.

482.
492,
502.
513.
523.

172.

214.

224,
235.
245.
256.
266.

276.
287.
297.
307.
318.

328.
339.
349,
359.
369.

380.
390.
400.
411.
421.

431.
442,
452.
462.
472.

483.
493.
503.
514,
524 .

173.

225.

267.

277.
288.
298.
309.
319.

329.
340.
350.
360.
371.

38l.
3g91.
401.
412.
422,

432.
443,
453,
463.
474,

484,
494,
504.
515.
525.




APPENDIX E : Tabulated Run Results for RETP1
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Table 1A : 8 Exp in Series, RS = 0.931 (Hi)
min X = 0.0002 f/hr, max A = 0.0016 f/hr, UT = 10 hrs
Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
1 Test 5 until 2*NFC 0.1 0.919 0.982
5 failed. (80)
0.2 0919 0.960
NFC=40 2*(NFC+ 0.1 0.906 1.000
NCOMP)
(96) 02 0.905 0999
2*NFC- 0.1 0.927 0.949
NCOMP
(72) 0.2 0.927 0.880
2*(NFC- 0.1 0.934 0.821
NCOMP)
(64) 02 0.934 0.702
2 Test 15 until 2*NFC 0.1 0.928 0.955
15 failed. (240)
0.2 0.927 0.908
NFC=120 2*4(NFC+ 0.1 0923 0.990
NCOMP)
(256) 0.2 0.923 0975
2*NFC- 0.1 0.930 0.916
NCOMP
(232) 02 0930 0.833
2*(NFC- 0.1 0.932 0.844
NCOMP)
(224) 02 0.932 0.747
3 Test 15 until 2*NFC 0.1 0.927 0.955
11 failed. (176)
0.2 0926 0916
NFC=88 2*(NFC+ 0.1 0.921 0.99
NCOMP)
(192) 0.2 0.920 0.988
2*NFC- 0.1 0.930 0916
NCOMP
(168) 0.2 0.929 0.843
2*(NFC- 0.1 0933 0.843
NCOMP)
(160) 02 0932 0.735




Table 1A :

8 Exp in Series, RS = 0.931 (Hi) (Cont...)
min A = 0.0002 f/hr, max A = 0.0016 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
4 Test 15 until 2*NFC 0.1 0.924 0.970
7 failed. (112)
0.2 0923 0.931
NFC=56 2%(NFC+ 0.1 0915 0.998
NCOMP)
(128) 0.2 0913 0.994
2*NFC- 0.1 0.929 0.919
NCOMP
(104) 02 0928 0.853
2*(NFC- 01 0934 0.835
NCOMP)
(96) 02 0.933 0.720
5 Test 15 until 2*NFC 0.1 0.915 0.986
3 failed. (48)
0.2 0912 0975
NFC=24 2%(NFC+ 0.1 0.891 1.000
NCOMP)
(64) 02 0.888 1.000
2*NFC- 0.1 0.927 0.944
NCOMP
(40) 0.2 0926 0.860
2*(NFC- 0.1 0.939 0.753
NCOMP)
(32) 0.2 0.939 0.634
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Table 1B : 8 Exp in Series, RS = 0.803 (Lo)
min A = 0.001 f/hr, max A = 0,0045 f/hr, UT = 10 hrs
Test Deg of Mecasures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
] 1 Test 5 until 2*NFC 0.1 0.773 0.986
5 failed. (80)
02 0.773 0.963
NFC=40 2%(NFC+ 0.1 0.738 1.000
NCOMP) .
(96) 02 0.736 0.999
2*NFC- 0.1 0.792 0.953
NCOMP
(72) 0.2 0.792 0.892
2*(NFC- 0.1 0.811 0.831
NCOMP)
(64) 0.2 0812 0.713
2 Test 15 uatil 2*NFC 01 0.794 0.962
15 failed. (240)
0.2 0.793 0916
NFC=120 2%(NFC+ 0.1 0.783 0.993
NCOMP)
(256) 02 0.782 0.981
2*NFC- 0.1 0.800 0.924
NCOMP
(232) 0.2 0.799 0.840
2*(NFC- 0.1 0.806 0.858
NCOMP)
(224) 02 0.805 0.755
3 Test 15 until 2*NFC 0.1 0.792 0.966
11 failed. (176)
02 0.790 0921
NFC=88 2*(NFC+ 0.1 0.776 0.996
NCOMP)
(192) 0.2 0.774 0.989
2*NFC- 0.1 0.800 0.922
NCOMP
(168) 02 0.798 0.855
2*(NFC- 0.1 0.808 0.855
NCOMP)
(160) 02 0.806 0.746
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Table 1B :

8 Exp in Series, RS = 0.803 (Lo) (Cont...)
min A = 0.001 f/hr, max A = 0.0045 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
4 Test 15 until 2*NFC 0.1 0.785 0.974
7 failed. (112)

02 0.782 0938
NFC=56 2%(NFC + 0.1 0.760 0.998

NCOMP)
(128) 0.2 0.756 0.996
2*NFC- 0.1 0.798 0.925

NCOMP
(104) 0.2 0.795 0.860
2*(NFC- 0.1 0.811 0.841

NCOMP)
(96) 0.2 0.808 0727
S Test 15 until 2*NFC 0.1 0.759 0.989

3 failed. (48)

0.2 0.755 0977
NFC=24 2*(NFC+ 0.1 0.700 1.000

NCOMP)
(64) 02 0.793 1.000
2*NFC- 0.1 0.791 0.949

NCOMP
(40) 02 0.789 0872
2*(NFC- 0.1 0.825 0.763

NCOMP)
(32) 0.2 0.825 0.642
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Table 2A : 8 Wei in Series, RS = 0.980 (Hi)
min A = 0.001 f/hr, max A = 0.008 f/hr, UT = 10 hrs
Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
1 Test S until 2*NFC 01 0.947 0.992
S failed. (80)
02 0.930 0.989
NFC=40 2%(NFC+ 0.1 0.937 0.994
NCOMP)
(96) 0.2 0918 0.993
2*NFC- 01 0.951 0.989
NCOMP
(72) 0.2 0937 0.986
2*(NFC- 0.1 0.956 0.985
NCOMP) :
(64) 02 0943 0981
2 Test 15 until 2*NFC 0.1 0978 0.918
15 failed. (240)
02 0974 0913
NFC=120 24(NFC + 0.1 0977 0931
NCOMP)
(256) 02 0972 0.924
2*NFC- 0.1 0979 0914
NCOMP
(232) 0.2 0.975 0.901
2*(NFC- 0.1 0.980 0.904
NCOMP)
(224) 0.2 0975 0.889
3 Test 15 until 2*NFC 0.1 0.982 0.876
11 failed. (176)
02 0977 0.860
NFC=88 2¢(NFC+ 0.1 0.980 0.894
NCOMP)
(192) 0.2 0975 0.882
2*NFC- 0.1 0.983 0.861
NCOMP
(168) 0.2 0978 0.839
2*(NFC- 0.1 0.983 0.840
NCOMP)
(160) 02 0.979 0.819

99




Table 2A :

8 Wei in Series, RS = 0.980 (Hi) (Cont...)

min A = 0.001 f/hr, max A = 0.008 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
4 Test 15 until 2*NFC 0.1 0.987 0.800
7 failed. (112)
02 0981 0.779
NFC=356 2*(NFC+ 0.1 0.985 0.839
NCOMP)
(128) 02 0.978 0.824
2*NFC- 0.1 0.988 0.776
NCOMP
(104) 0.2 0.982 0.753
2*(NFC- 0.1 0.989 0.746
NCOMP)
(96) 0.2 0.983 0.732
5 Test 15 until 2*NFC 0.1 0.994 0.621
3 failed. (48)
0.2 0.991 0.584
NFC=24 2%(NFC + 0.1 0.993 0.705
NCOMP)
(64) 0.2 0.988 0.685
2*NFC- 01 0.995 0.548
NCOMP
(40) 0.2 0.992 0.514
2*(NFC- 0.1 0.99 0.468
NCOMP)
(32) 0.2 0.993 0.417
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Table 2B : 8 Wei in Series, RS = 0.832 (Lo)
min A = 0.003 f/hr, max A = 0.024 f/hr, UT = 10 hrs
Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
1 Test 5 until 2*NFC 0.1 0.736 0.985
5 failed. (80)
02 0.688 0.983
NFC=40 2%(NFC+ 0.1 0.696 0992
NCOMP)
(96) 0.2 0.641 0.991
2*NFC- 0.1 0.757 0.980
NCOMP
(72) 02 0.713 0973
2*(NFC- 0.1 0.778 0.968
NCOMP)
(64) 02 0.739 0954
2 Test 15 until 2*NFC 0.1 0.834 0.895
15 failed. (240)
0.2 0.812 0.876
NFC=120 24(NFC+ 0.1 0.825 0.920
NCOMP)
(256) 0.2 0.801 0.904
2*NFC- 0.1 0.839 0.880
NCOMP
(232) 0.2 0.817 0858
2*(NFC- 0.1 0.844 0.866
NCOMP)
(224) 0.2 0.823 0.838
3 Test 15 until 2*NFC 0.1 0.854 0.838
11 failed. (176)
0.2 0.831 0.808
NFC=88 2*(NFC+ 0.1 0.842 0.882
NCOMP)
(192) 0.2 0.817 0.861
2*NFC- 0.1 0.860 0.809
NCOMP
(168) 0.2 0.837 0.776
2*(NFC- 0.1 0.865 0.777
NCOMP)
(160) 0.2 0.844 0.734
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Table 2B :

8 Wei in Series, RS = 0.832 (Lo) (Cont...)
min X = 0.003 f/hr, max A = 0.024 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
4 Test 15 until 2*NFC 01 0.878 0.738
7 failed. (112)
02 0.857 0.708
NFC=36 2*(NFC+ 0.1 0.864 0.804
NCOMP)
(128) 02 0.839 0.780
2*NFC- 0.1 0.886 0.702
NCOMP
(104) 0.2 0.866 0.655
2*(NFC- 01 0.894 0.642
NCOMP)
(96) 0.2 0.875 0.587
5 Test 15 until 2*NFC 0.1 0910 0.611
3 failed. (48)
02 0.888 0.560
NFC=24 2%(NFC+ 0.1 0.885 0.752
NCOMP)
(64) 0.2 0.856 0.719
2*NFC- 0.1 0.923 0.515
NCOMP
(40) 0.2 0.905 0.462
2*%(NFC- 0.1 0.936 0390
NCOMP)
(32) 0.2 0.922 0.306

102




Table 3A : 4 Exp and 4 Wei (Mixed) in Series, RS = 0.980 (Hi)
min A = 0.002 f/hr, max X = 0.008 f/hr, UT = 10 hrs
Test Deg of Measures of Accuracy
S/N Plan Freedom @
RSLOW LEVEL
1 Test 5 until 2*NFC 0.1 0.979 0.942
5 failed. (80)
02 0978 0.905
NFC=40 2*(NFC+ 0.1 0975 0.987
NCOMP)
(96) 0.2 0974 0976
2*NFC- 0.1 0.981 0.881
NCOMP
(72) 0.2 0.980 0.805
2*(NFC- 0.1 0.983 0.771
NCOMP)
(64) 0.2 0.982 0.684
2 Test 15 until 2*NFC 01 0.981 0.863
15 failed. (240)
0.2 0.980 0.800
NFC=120 2%(NFC+ 0.1 0.979 0941
NCOMP)
(256) 02 0.979 0.898
2*NFC- 01 0.981 0.881
NCOMP
(232) 0.2 0.980 0.805
2*(NFC- 01 0.982 0.725
NCOMP)
(224) 0.2 0981 0.631
3 Test 15 until 2*NFC 0.1 0.981 0.864
11 failed. (176) _
0.2 0.980 0.801
NFC=288 2*(NFC+ 0.1 0979 0.951
NCOMP)
(192) 0.2 0978 0907
2*NFC- 0.1 0.982 0.802
NCOMP
(168) 02 0.981 0.698
2*(NFC- 0.1 0.982 0.702
NCOMP)
(160) 02 0.982 0.591
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Table 3A :

4 Exp and 4 Wei (Mixed) in Series, RS = 0.980 (Hi) (Cont...)

min A = 0.002 f/hr, max A = 0.008 f/hr, UT = 10 hrs

Test Deg of Measures of Accuracy "
S/N Plan Freedom a
RSLOW LEVEL “
; =
4 Test 15 until 2*NFC 0.1 0.981 0.865
7 failed. (112)
02 0.980 0.787
NFC=56 2*(NFC + 0.1 0978 0952
NCOMP)
(128) 0.2 0.978 0920
2*NFC- 0.1 0.982 0.769
NCOMP
(104) 0.2 0.982 0.676
2*(NFC- 0.1 0.983 0.644
NCOMP)
(96) 0.2 0983 0.523
5 Test 15 until 2*NFC 0.1 0.982 0.843
3 failed. 48
) 0.2 0.981 0.762
NFC=24 2*(NFC+ 0.1 0976 0.970
NCOMP)
(64) 02 0975 0.941
2*NFC- 0.1 0.984 0.684
NCOMP
(40) 02 0.984 0.580
2*(NFC- 0.1 0.987 0.459
NCOMP)
(32) 02 0.987 0.356
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Table 3B : 4 Exp and 4 Wei (Mixed) in Series, RS = 0.809 (Lo)
min A = 0.002 f/hr, max A = 0.008 f/hr, UT = 10 hrs
Test Deg of Measures of Accuracy
S/N Plan Freedom a
RSLOW LEVEL
1 Test 5 until 2*NFC 0.1 0.788 0.961
S failed. (80)
02 0777 0.930
NFC=40 2%(NFC + 0.1 0.754 0.99
NCOMP)
(96) 0.2 0.741 0.987
2*NFC- 0.1 0.805 0910
NCOMP
(72) 0.2 0.796 0.874
2*(NFC- 0.1 0.823 0.838
NCOMP) -
(64) 02 0.815 0.741
2 Test 15 until 2*NFC 0.1 0.808 0.909
15 failed. (240)
0.2 0.805 0.842
NFC=120 2*(NFC+ 0.1 0.797 0.962
NCOMP)
(256) 0.2 0.794 0.929
2*NFC- 0.1 0.813 0854
NCOMP
(232) 0.2 0.811 0.778
2*(NFC- 0.1 0.819 0.787
NCOMP)
(224) 02 0.817 0.717
3 Test 15 until 2*NFC 01 0.811 0.885
11 failed. (176)
02 0.807 0.820
NFC=83 2%(NFC+ 0.1 0.797 0962
NCOMP)
(192) 0.2 0.792 0925
2*NFC- 0.1 0.818 0.821
NCOMP
(168) 02 0.814 0.737
2*(NFC- 0.1 0.826 0.741
NCOMP)
(160) 02 0822 0.647
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Table 3B : 4 Exp and 4 Wei (Mixed) in Series, RS = 0.809 (Lo) (Cont...)
min A = 0.002 f/hr, max A = 0.008 f/hr, UT = 10 hrs
Test Deg of Measures of Accuracy
S/N Plan Freedom @
RSLOW LEVEL
4 Test 15 until 2*NFC 0.1 0.814 0.872
7 failed. (112)
0.2 0.810 0792
NFC=56 2%(NFC+ 0.1 0.792 0.963
NCOMP)
(128) 02 0.787 0.931
2*NFC- 0.1 0.825 0.775
NCOMP
(104) 2 0.822 0.685
2*(NFC- 0.1 0.836 0.663
NCOMP)
(96) 02 0.834 0.550
5 Test 15 until 2*NFC 0.1 0.825 0.836
3 failed. (48)
0.2 0.815 0.755
NFC=24 2*(NFC+ 0.1 0.780 0.970
NCOMP)
(64) 0.2 0.766 0.940
2*NFC- 0.1 0.849 0.679
NCOMP
(40) 02 0.842 0.553
2*(NFC- 0.1 0.874 0.437
NCOMP)
- (32) 02 0.869 0.338

106




APPENDIX F : Tabulated Run Results for RETP2
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Table 4A : 8 Exp in Series, RS = 0.961 (Hi)
X = 0.001 f/hr, UT = 5 hrs
Degrees K / E[NFC] Measures of Accuracy
S/N of (TT) @
Freedom RSLOW LEVEL
1 2*(1+NFC) 025 /12 0.1 0.950 0.851
(225)
02 0935 0.851
05/24 0.1 0.957 0.857
(450)
0.2 0.954 0.857
10/48 01 0.957 0.941
(900)
02 0.957 0.850
20/96 0.1 0.958 0.916
(1800)
0.2 0.960 0.850
30/ 144 0.1 0.959 0916
(2700)
0.2 0.959 0.809
40 /19.2 0.1 0.959 0.937
(3600)
02 0.960 0.843
50/ 24 0.1 0.960 0.926
(4500)
0.2 0.960 0814
100/ 48 0.1 0.960 0.924
(9000)
0.2 0.960 0.809
200 / 96 0.1 0.960 0914
(18000)
02 0.961 0.820
30.0 / 144 0.1 0.961 0.906
27000
( ) 0.2 0.961 0.804
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Table 4A :

8 Exp in Series, RS =

0.961 (Hi) (Cont...)

A = 0.001 f/hr, UT = S hrs
Degrees K / E[NFC] Measures of Accuracy
S/N of (TT) a
Freedom RSLOW LEVEL

T 2 1.3* 025 /12 0.1 0.950 0.851

2*(1+NFC) (225)
0.2 0935 0.851
05/24 0.1 0.957 0.857

(450) :

0.2 0.941 0.857
10/ 48 0.1 0.946 0.981

(900)
0.2 0.945 0.941
20/96 0.1 0.947 0.989

(1800)
02 0.950 0.948
30 / 144 0.1 0.949 0.997

(2700)
02 0.949 0.969
40/ 192 0.1 0.948 0.998

(3600)
0.2 0.950 0.987
50/ 24 0.1 0.949 0.998

(4500)
02 0.949 0.985
10.0 / 48 01 0.949 1.000

(9000)
02 0.949 0.997
20.0 / 96 0.1 0.949 1.000

(18000)
02 0.950 1.000
30.0 / 144 0.1 0.950 1.000

(27000)
0.2 0.949 1.000
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Table 4B : 8 Exp in Series, RS = 0.819 (Lo)
A = 0.005 f/hr, UT = S hrs
Degrees K / E[NFC] Measures of Accuracy
S/N of (TT) a
Freedom RSLOW LEVEL

1 2*(1+NFC) 025/12 0.1 0.774 0.851

(45)
02 0.702 0.851
05/24 0.1 0.801 0.857

(90)
02 0.788 0.857
10/48 0.1 0.801 0.941

(180)
0.2 0.803 0.850
20/96 0.1 0.807 0916

(360)
02 0.814 0.847
30/ 144 0.1 0.812 0916

(540)
02 0.812 0.809
40 /192 0.1 0.809 0.923

(720)
0.2 0.817 0.840
50/24 0.1 0.813 0.925

(900)
02 0.816 0.814
100 / 48 0.1 0.816 0919

(1800)
0.2 0.817 0.809
20.0 / 96 0.1 0.817 0.814

(3600)
02 0.818 0.820
300 / 144 0.1 0.819 0.907

5400
(5400) 02 0.818 0.804
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Table 4B :

8 Exp in Series, RS

= 0.819 (Lo) (Cont...)

X = 0.005 f/hr, UT = 5 hrs
Degrees K / E[NFC] Measures of Accuracy
S/N of (TT) a
Freedom RSLOW LEVEL
2 1.3* 025 /12 0.1 0.774 0.851
2*(1+NFC 45
( ) 43 0.2 0.702 0.851
05/24 0.1 0.801 0.857
(90)
0.2 0.736 0.857
1.0 /48 0.1 0.759 0.981
(180)
0.2 0.753 0.941
20/96 0.1 0.762 0.989
(360)
0.2 071 0.948
30/ 144 0.1 0.770 0.991
(540)
0.2 0.768 0.969
40/19.2 0.1 0.766 0.997
(720)
0.2 0.772 0.987
50/24 0.1 0.769 0.998
(900)
0.2 0.7 0.985
100 / 48 0.1 0.771 1.000
(1800)
0.2 0.771 0.997
200 / 96 0.1 0.771 1.000
(3600)
0.2 0.772 1.000
300 / 144 0.1 0.773 1.000
(5400)
0.2 0772 1.000
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Table S5SA : 8 Wei in Series, RS = 0.956 (Hi) (*)

X = 0.005 f/hr, UT = 15 hrs
Degrees K / EINFC] Measures of Accuracy
S/N of (TT) a
Freedom RSLOW LEVEL
IF

1 2*(1+NFC) 025/ 12 0.1 1.000 0.186

(45)
0.2 1.000 0.158
05/24 0.1 0.986 0.501

(90)
0.2 0.979 0.458
10/48 0.1 0.967 0.767

(180)
02 0.960 0.732
20/96 0.1 0957 379

(360)
0.2 0952 0.854
30/ 144 0.1 0.952 0.934

(540)
02 0.946 0.922
40/ 192 0.1 0.952 0.940

(720)
0.2 0.946 0.928
50/24 01 0.952 0.940

(900)
0.2 0.946 0.928
100 / 48 0.1 0.952 0.940

(1800)
0.2 0.946 0928
20.0 / 96 0.1 0.952 0.940

(3600)
0.2 0.946 0928
30.0 / 144 0.1 0.952 0.940

5400
(5400) 0.2 0.946 0.928

(*) 20 test items for each Weibull component.
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Table SA :

8 Wei in Series, RS = 0.956 (Hi) (*) (Cont...)

X = 0.005 f/hr, UT = 1S5 hrs

Degrees K / E[NFC] Measures of Accuracy
S/N of (TT) a
Freedom RSLOW LEVEL
2 1.3* 025/12 01 1.000 0.258
2*(1+NFC) (45)
0.2 0.999 0224
05/24 0.1 0.983 0.635
(50)
0.2 0.973 0.593
190 / 4.8 0.1 0.958 0.884
(180)
0.2 0.949 0.866
2.0 /9.6 0.1 0.946 0.963
(360)
0.2 0.939 0.956
30/ 144 0.1 0.939 0.984
(540)
02 0.930 0976
40 /192 0.1 0.938 0.987
(720)
0.2 0.930 0.981
50/ 24 0.1 0.938 0.987
(900)
0.2 0.930 0.981
10.0 / 48 0.1 0.938 0.987
(1800)
0.2 0.9%0 0.981
20.0 / 96 0.1 0.938 0.987
(3600)
0.2 0.930 0.981
300/ 144 0.1 0.938 0.987
(5400)
02 0.930 0.981
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Table 5B : 8 Wei in Series, RS = 0.835 (Lo) (*)
XA = 0.01 f/hr, UT = 15 hrs

Degrees K / E[NFC] Measures of Accuracy
S/N of (TT a
Freedom ) RSLOW LEVEL
1 2*(1+NFC) 025/12 0.1 0.966 0222
(22.5)
02 0.963 0.161
05/24 0.1 0.932 0.367
(45)
0.2 0913 0.319
10 /48 01 0.874 0.704
(90)
0.2 0.858 0.658
2.0/96 0.1 0.842 0.851
180
(180) 0.2 0.832 0.819
30/ 144 0.1 0.829 0924
(270)
0.2 0.814 0.902
40 /192 0.1 0.827 0.928
(360)
0.2 0.813 0.908
50/ 24 0.1 0.827 0.928
(450)
0.2 0.813 0.908
100/ 48 0.1 0.827 0.928
(900)
0.2 0.813 0.908
200, 96 0.1 0.827 0.928
(1800)
0.2 0.813 0.908
30.0 / 144 0.1 0.827 0928
(2700)
0.2 0.813 0.908
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Table 5B :

8 Wei in Series, RS = 0.835 (Lo) (*)

A = 001 f/hr, UT = 15 hrs

Degrees K / EINFC] Measures of Accuracy
S/N of (TT) a
Freedom RSLOW LEVEL
2 1.3* 025/12 0.1 0.957 0.326
2*(1+NFC) (22.5)
02 0.953 0.268
05/24 0.1 0914 0.572
(45) '
0.2 0.890 0.522
10/48 0.1 0.842 0.881
(90)
02 0.821 0.862
20 /96 0.1 0.802 0.968
(180)
02 0.788 0.962
30/ 144 0.1 0.786 0.986
(270)
02 0.766 0.983
40 /192 0.1 0.784 0.989
(360)
02 0.766 0.986
50/24 0.1 0.784 0.989
(450)
0.2 0.766 0.986
10.0 / 48 0.1 0.784 0.989
(900)
02 0.766 0.986
20.0 / 96 0.1 0.784 0.989
(1800)
0.2 0.766 0.986
300 /144 0.1 0.784 0.989
(2700)
02 0.766 0.986

F
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Table 6A :

4 Exp and 4 Wei (Mixed) in Series, RS = 0.958 (Hi) (*)

A(exp) = 0.001 f/hr, UT(exp) = S hrs
A(wei) = 0.005 f/hr, UT(wei) = 15 hrs

Degrees K / E[NFC] Measures of Accuracy "
S/N of TT(exp) a
Freedom TT(wei) RSLOW LEVEL “
1 2*(1+NFC) 025/12 0.1 1.000 0.620
(225)
(45) 02 0.995 0.451
05/24 0.1 0.982 0.623
(450)
(90) 02 0975 0573
1.0/ 48 01 0971 0.736
(900)
(180) 02 0.965 0.684
20/96 0.1 0.964 0.803
(1800)
(360) 0.2 0.960 0.765
30/144 0.1 0.960 0.874
(2700)
(540) 0.2 0.956 0.841
40 /192 01 0.960 0.873
(3600)
(720) 02 0.957 0.839
50/24 0.1 0.959 0.887
(4500)
(900) 0.2 0.956 0.861
10.0 / 48 0.1 0.959 0.891
(5000)
(1800) 0.2 0.956 0.862
20.0 / 96 01 0.959 0.892
(18000)
(3600) 0.2 0.955 0.867
300/ 144 0.1 0.960 0.877
(27000)
(5400) 0.2 0.956 0.862
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Table 6A : 4 Exp and 4 Wei (Mixed) in Series, RS = 0.958 (Hi) (*) (Cont...)
A(exp) = 0.001 f/hr, UT(exp) = S hrs

A(wei) = 0.005 f/hr, UT(wei) = 15 hrs

Degrees K / E[NFC] Measures of Accuracy
S/N of TT(exp) a
Freedom TT(wei) RSLOW LEVEL
2 13+ 025 /12 0.1 1.000 0.723
2*(1+NFC) (225)
(45) 0.2 0.994 0.697
05/24 0.1 0977 0.730
(450)
(90) 0.2 0.969 0.681
10/48 0.1 0.964 0.853
(900)
(180) 02 0955 0.837
20/96 0.1 0954 0.934
{1800)
(360) 0.2 0.949 0921
30/ 144 0.1 0.949 0.961
(2700)
(540) 02 0944 0.949
40 /192 0.1 0.948 0.975
(3600)
(720) 02 0.945 0.966
50/24 01 0.948 0.984
(4500)
(900) 0.2 0.94 0.978
100 / 48 0.1 0.948 0971
(9000)
(1800) 0.2 0943 0.965
200 /96 0.1 0.948 0.983
(18000)
(3600) 02 0942 0979
30.0 / 144 0.1 0.949 0.978
(27000)
(5400) 0.2 0944 0971
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Table 6B : 4 Exp and 4 Wei (Mixed) in Series, RS = 0.827 (Lo) (*)
A(exp) = 0.005 f/hr, UT(exp) = S hrs
A(wei) = 0.010 f/hr, UT(wei) = 15 hrs
Degrees K / E[NFC] Measures of Accuracy “
S/N of TT(exp) o
Freedom TT(wei) RSLOW LEVEL Il
1 2*(1+NFC) 025 /12 0.1 0971 0.691
(45)
(22.5) 02 0938 10,685
05/24 0.1 0.916 0.600
(50)
(45) 0.2 0.893 0.532
10/ 48 0.1 0.876 0.684
(180)
(90) 02 0855 0.638
20/96 0.1 0.849 0.787
(360)
(180) 02 0.836 0.750
30/ 144 0.1 0.838 0.855
(540)
(270) 0.2 0.824 0.817
40 /192 0.1 0.834 0.870
(720)
(360) 0.2 0.824 0.819
50/ 24 0.1 0.829 0.890
(900)
(450) 02 0.822 0.838
100 / 48 0.1 0.827 0.900
(1800)
(900) 0.2 0.820 0.863
20.0 / 96 0.1 0.826 0.902
(3600)
(1800) 0.2 0.819 0.871
300 / 144 0.1 0.831 0.888
(5400)
(2700) 02 0.821 0.854
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Table 6B : 4 Exp and 4 Wei (Mixed) in Series, RS = 0.827 (Lo) (*) (Cont...)
A(exp) = 0.005 f/hr, UT(exp) = S hrs
A(wei) = 0.010 f/hr, UT(wei) = 15 hrs
Degrees l K / E[NFC] Measures of Accuracy
S/N of TT(exp) a
Freedom TT(wei) RSLOW LEVEL
2 1.3* 025 /12 0.1 0.964 0.718
2%(1+NFC) (45)
(22.5) 0.2 0.922 0.700
05/24 0.1 0.895 0.728
(90)
(45) 0.2 0.866 0.688
10/ 48 0.1 0.846 0.864
(180)
(90) 02 0.818 0.838
20/96 0.1 0.811 0.939
(360)
(180) 0.2 0.795 0.921
30/ 144 0.1 0.798 0.964
(540)
(270) 02 0.780 0.952
40/ 19.2 0.1 0.792 0.981
(720)
(360) 0.2 0.780 0972
50/24 0.1 0.787 0.986
(900)
(450) 02 0.777 0.984
10.0 / 48 0.1 0.784 0.988
(1800)
(900) 0.2 0.774 0.983
20.0 / 96 0.1 0.783 0.993
(3600)
(1800) 02 0772 0.988
30.0 / 144 0.1 0.788 0.996
(5400)
(2700) 02 0.775 0.994
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